Usb serial design and experience In
Plan 9

Gorka Guardiola
Francisco J. Ballesteros
Enrique Soriano Salvador

(paurea, nemo, esoriano)(@lsub.org
Lsub, Universidad Rey Juan Carlos

No serial on new computers

= Most computers don't come with serial

= Specially laptops, many times servers

= = /
W
— ———

No problem ;right?

= Who needs serial anyways?
= Use the network or cec or...

= But...

Need for serial

Porting an O.S. 1s already hard enough

From reboot/loop + led to interrupts and mmu
working

Couple of registers at most

No needs for interrupts (polling mode)

Normally comes preinitialized

Alternatives

= Usb debug plug: tried it

= only some Ehci
= Jeaves you without usb port

= Jooses bytes (maybe a fixed bug?)

= Cec: need interrupts + ethernet driver +... at that
point I am done porting

= Not real alternative as it 1s, which 1s why...

What vendors do

= Have secret serial ports (may need soldering)

= Include Serial to USB chip inside

Kinds of usb/serial

Prolific, [(—=*

Ftdi, inside the sheeva

Cdc-acm, inside phones

«_ 7 Usb debug cable

Driver 1n the kernel for the debugged machine
Driver 1n usb/serial for console/debugger
Only works for EHCI, cannot use the port

Mostly working, looses bytes (probably a solved
bug)

Careful while using, (asymmetric, one side
powered)

KQ —— ° e
. = Prolific

First one we supported (pl2303)

Inside most cheap usb/serial cables and some old
dock stations

Driver 1inside usb/serial
Seems to work, tried with two cables
Ported the gumstix with it

No extra modem flow control supported, just basics

Ftdi

Inside the sheeva and most new usb devices

Many serial devices had an ftdi added
Driver in usb/serial

Works well except for some unresolved 1ssue
(Geoft?)

Multiport supported, but untried (I don't have any
device, Jeff?)

Cdc-acm

Usb standard for serial communications

I had not seen any until recently

Inside phones and 3G/umts modems
It was unsupported at the time of writing now

Now Peter Bosch and Jan Sacha seem to have one
working in usb/serial (I am guessing)

Architecture

main.c standard USB not embedded main

serial.[ch] common infrastructure, detection,
filesystem

ftdi.[ch] for FTDI support
prolific.[ch] Prolific support

ucons.[ch] EHCI debug cable

Architecture

Detection
Configuration
Serial ops

Read/write Waitddata/waitdwrite

struct Serialops {

int
int
int
int
int
int
int
int
int
int
int

int

(**seteps)(Serialport™);
(*init)(Serialport™);
(**getparam)(Serialport™);
(*setparam)(Serialport™);
(**clearpipes)(Serialport™);
(*reset)(Serial*);
(*sendlines)(Serialport™);
(*modemctl)(Serialport™, int);
(*setbreak)(Serialport™, int);
(*readstatus)(Serialport™);
(*waitddata)(Serialport®, uchar *, int);

(*waitdwrite)(Serialport™®, uchar *, int);

Procs/concurrency

Operations 1n the fs proc (one per operation in
USB)

Qlock per device (not per port)

Each device may create extra procs for reading
interrupt

In FTDI, data+metadata are mixed and periodic,
and we need to read as much as we can

RPC over channels for reading (take away headers,
read lines)

Cleaning up

There can be errors on different procs,
sender/receivers

Need to try recovering from port to device

Need to take care of in-transit data

Added chanclose and chanclosing to thread library
Similar to Go (but not quite)

Close

Chanclose closes a channel, unblocks all operations
After chanclose it 1s all non-blocking
When all the channels on an Alt are closed, error

Chanclosing returns:

= -1 1f close was not called

= Number of items on the channel otherwise
Complex to get right:

= Interrupts
= Alt

Close

= Common pattern of use 1S

= Sender closes, does not touch the channel

= Recerver gets the error, check chanclosing if O frees

= More than one sender/receiver, use reference
counting

Naming

Added a U (e1aUQ0)

Needed a root, because the USB fs library
e1aUO/e1aUQ.3ctl eiaU0/e1al0.3

Sort of redundant but need a unique name 1n /dev
Fused ctl and status

Mount 1n /n 1f run by hand, /dev if embedded

Do not want to leave /dev broken

Performance problems

Serial devices are faster than we thought (specially
FTDI)

Reading smaller packets does not cut it (too many
context switches)

We were loosing bytes

Read a big chunk and then break in packets

Docs/specs

= Specs it any (1if overwhelming, leave for last)

= Vendors (various results)

= FreeBSD, cleaner, know better what they are doing

= Linux, hardware bugs, more complete

Sniffing Linux using wireshark

= Any embedded library you can find

http://www.usb.org/developers/devclass_docs/usbcdc11.pdf
http://fxr.watson.org/fxr/source/dev/usb/serial/umodem.c
http://tomoyo.sourceforge.jp/cgi-bin/lxr/source/drivers/usb/class/cdc-acm.c

Conclusions

= Simple, clean usb-serial implementation

= Line disciple not mixed with driver and hand USB
transactions (USB infrastructure + Plan 9
approach)

= Easy to debug and add new drivers

Future work

= More testing

= Multiport 1s untested (we don't have devices)

= Not all features have been throughly tested

= Cdc-acm soon: Jan Sacha has got it working

= JTAG

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

