A Plan 9 Approach to Hierarchical Patch Dynamics

John (EBo) David

IWP9 2010 Seattle, WA

Many Problems are Inherently Multiscale

Scale	Major Characteristics	
Regional Landscape	 Composed of different types of local landscapes Heterogeneous in ecosystem structure and function Characterized by the dominant biome and land use pattern at the regional scale (e.g., an urbanized desert region vs. an agricultural grassland region) 	
Local Landscape	 Composed of different land use and land cover types Heterogeneous in ecosystem structure and function Characterized by dominant land use types, such as urban landscapes, rural landscapes, agricultural landscapes, and natural desert landscapes 	
Local Ecosystem	 Relatively homogeneous vegetation-soil complexes Readily detectable from air photos and remote sensing data (e.g., Landsat TM images) Largely corresponding to Anderson et al.'s (1976) Level II classes 	

Hierarchical Patch Dynamics (HPD) (Wu and Loucks 1995)

- HPD explicitly integrates hierarchy theory with patch dynamics, and provides a conceptual and operational framework for linking pattern, process, and scale in heterogeneous landscapes.
- Clean model decomposition allows linking across disciplines as well as scale
- Fully runtime polymorphic

Hierarchy Theory (Simon 1962)

Focuses on top-down constraints and driving functions

Cedric Ratez, et al. (2007)

Patch Dynamics (Pickett and White 1985)

• Focuses on spatial configuration and heterogeneity

Sevelleta LTER

Unit-models, Transport-models and Neighborhoods

Unit-models: Model a semi-closed system Know nothing about the outside world Contain state information Typed

Unit-models, Transport-models and Neighborhoods

Transport-models: Used to connect two unit-models Stateless by convention Connectivity defined by neighborhood rules Directed arc defined by model types

Unit-models, Transport-models and Neighborhoods

Neighborhoods: Implicit (4-cell, 8-cell) Explicit Anisotropic

Examples:

Urban growth modeling with Cellular Atomata Fluvial geomorphology linked with alternative vegetation models Forest fire dynamics Run-time polymorphism

Example: Urban Growth (CA)

Example: Linking CA Braided Stream Model Vegetation Succession

- Cellular automata based on routing water and sediment along a regular grid.
- Lateral movement accommodates bank erosion

- UD undisturbed
- 0 recently disturbed
- OW open water
 - GR bare gravel
 - H herbaceous wetlands
- SV popular/willow seedlings on gravel
 - CW willow saplings
 - W mature willow
 - CS cottonwood/poplar with shrubs
 - CY young cottonwood
 - CO over-mature cottonwood
- SG shrubs and grassland

Example: Linking CA Braided Stream Model Vegetation Succession

- Cellular automata based on routing water and sediment along a regular grid.
- Lateral movement accommodates bank erosion

- Plant recruitment and growth model
- Non-linear feedbacks to geomorphic processes as a function of stand structure (density and basal area)

Example: Fire Dynamics

Anisotropic spread of fire - gray burned, black burning

Example: Run-time Polymorphism

Overloading models at runtime provides mechanisms to model dynamic hierarchies

> Original model Conversion even cause the unit-model to be decoupled from the system Temporal transport-model data-mines old unitmodel to parameterize new one New unit-model

Acknowledgments:

I would like to thank Google for their Summer of Code internship which supported the start of the HPD rewrite using Plan 9 primitives. Many thanks go to my GSoC mentor Dr. Ron Minnich for all his guidance this summer.