
Using Currying and process-private system calls to break
the one-microsecond system call barrier

Ronald G. Minnich1 and John Floren and Jim McKie2

January, 2009

1Sandia National Labs. Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United States Department of Energy
National Nuclear Security Administration under contract DEÂAC04Â94AL85000.
SAND- 2009-5156C.

2Bell Laboratories, Murray Hill, NJ, USA
Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 1 / 30

Outline

1 Introduction

2 Breaking out of the trap

3 What we did instead
Five easy pieces

4 Performance

5 Contributions, conclusions, future work

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 2 / 30

Introduction

The Problem

As we saw, we can figure out where the time goes

And we can fix some of it

But we can’t get there just by hacking the kernel

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 3 / 30

Introduction

The Problem

As we saw, we can figure out where the time goes

And we can fix some of it

But we can’t get there just by hacking the kernel

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 3 / 30

Introduction

The Problem

As we saw, we can figure out where the time goes

And we can fix some of it

But we can’t get there just by hacking the kernel

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 3 / 30

Introduction

Timing example to one fast network

decrefcclosememmovesegokaddrvalidaddrincreffdtochanplockdsize2bsizetreelookupgtltreewalklistdeletetreedeletepooldelblocksetdsizetrimB2DpoolalloclpunlockpoolallocsetmalloctagsetrealloctagmalloczD2Bgetdsizepoolmsizemsize_allocballocbqlentxfifofullqgetmemsetblockchecklistaddtreeinsertpooladdpoolfreelpoolfreefreefreebtxstarttxkickwakeupqnotfullqbwritetreenetsendtreewritewritesyspwritesyscalltrap

12
68

1.
5

19
18

5.
5

19
29

3.
5

19
34

7.
5

25
23

9.
5

25
26

2.
5

35
60

2.
5

38
91

2.
5

41
20

3.
5

44
41

1.
5

46
53

9.
5

47
18

5.
5

48
83

4.
5

49
05

0.
5

49
29

1.
5

49
31

2.
5

50
77

7.
5

53
58

7.
5

55
28

2.
5

56
09

3.
5

56
14

1.
5

59
50

0.
5

59
84

9.
5

60
88

0
62

28
6.

5
65

44
0.

5
67

42
5.

5

73
94

5.
5

77
43

1.
5

78
45

5.
5

78
48

9.
5

79
35

7.
5

81
78

7.
5

81
80

4.
5

84
45

2.
5

89
44

3
90

07
6.

5
90

08
5.

5
91

24
7.

5
91

29
4.

5
93

06
9.

5
95

23
2.

5

10
25

26
10

47
84

10
74

66
11

02
06

11
24

20

11
92

78
12

29
62

12
54

84
12

57
06

12
60

22
12

70
38

12
72

38
12

73
10

12
81

28
13

11
46

13
12

50
13

13
48

13
15

92
13

25
12

13
47

50
13

57
80

13
80

14
13

80
24

14
37

80
14

90
70

15
40

90
15

66
36

16
39

59
16

40
00

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 4 / 30

Introduction

er, what?

Drop into device write

Allocate

Push into the queue

kick the tree

send it out

And all we really had to do was push it into a FIFO

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 5 / 30

Introduction

So we killed the generality

But it’s still too slow

don’t seem to be able to get under 3-4 microseconds

fdtochan

Validaddr

Sort of an irreducible problem

Should we optimize these?

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 6 / 30

Introduction

Timing example to one fast network

decrefcclosememmovesegokaddrvalidaddrincreffdtochanplockdsize2bsizetreelookupgtltreewalklistdeletetreedeletepooldelblocksetdsizetrimB2DpoolalloclpunlockpoolallocsetmalloctagsetrealloctagmalloczD2Bgetdsizepoolmsizemsize_allocballocbqlentxfifofullqgetmemsetblockchecklistaddtreeinsertpooladdpoolfreelpoolfreefreefreebtxstarttxkickwakeupqnotfullqbwritetreenetsendtreewritewritesyspwritesyscalltrap

12
68

1.
5

19
18

5.
5

19
29

3.
5

19
34

7.
5

25
23

9.
5

25
26

2.
5

35
60

2.
5

38
91

2.
5

41
20

3.
5

44
41

1.
5

46
53

9.
5

47
18

5.
5

48
83

4.
5

49
05

0.
5

49
29

1.
5

49
31

2.
5

50
77

7.
5

53
58

7.
5

55
28

2.
5

56
09

3.
5

56
14

1.
5

59
50

0.
5

59
84

9.
5

60
88

0
62

28
6.

5
65

44
0.

5
67

42
5.

5

73
94

5.
5

77
43

1.
5

78
45

5.
5

78
48

9.
5

79
35

7.
5

81
78

7.
5

81
80

4.
5

84
45

2.
5

89
44

3
90

07
6.

5
90

08
5.

5
91

24
7.

5
91

29
4.

5
93

06
9.

5
95

23
2.

5

10
25

26
10

47
84

10
74

66
11

02
06

11
24

20

11
92

78
12

29
62

12
54

84
12

57
06

12
60

22
12

70
38

12
72

38
12

73
10

12
81

28
13

11
46

13
12

50
13

13
48

13
15

92
13

25
12

13
47

50
13

57
80

13
80

14
13

80
24

14
37

80
14

90
70

15
40

90
15

66
36

16
39

59
16

40
00

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 7 / 30

Introduction

Should we optimize fdtochan and validaddr

Cache the 32 or so addresses most programs use?

Cache channels in the proc struct?

We explored these options

Makes code in port more complex

End up with management of va cache in proc struct

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 8 / 30

Introduction

Such micro-optimization is a common approach

You see it all over, e.g., Linux

Lots of heuristics in the code

Which lead to creation of lots more timing-driven cleanup

Gets really complex

Can fail pathologically when programs do not follow common path

Kernel is trying to intuit your intentions

Got so crazy that Lustre just went ahead and added intents to ops

I.e. when you do ’walk’ you say ’and I intend to open this file after
the walk’

And all systems pay the costs of micro-optimization, even if only one
subsystem needs it

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 9 / 30

Introduction

Some numbers from Linux

grep -r inline .—wc

69649 440053 6904168

grep -r likely .—wc

18668 108045 1538433

Note: includes likely and unlikely!

e.g. kernel/workqueue.c: if (unlikely(cpu >= 0))

kernel/workqueue.c: while (unlikely(ret < 0));

grep -r heurist . — wc

197 2052 20268

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 10 / 30

Introduction

HPC gave up long ago

Around 1986, created interfaces that let programs write direct to
network[1]

These were later called OS bypass

OS did not, could not, know when or how network I/O occurred

Ubiquotous on top supercomputers

Problem: Any program, to get good performance, has to be rewritten
to use HPC networks

HPC network libraries starting to look like OSes

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 11 / 30

Introduction

But OS bypass is a trap

Sure it works

Just need to write an OS in your library

But most interfaces run an OS anyway

Bypass host OS, but not bypass the network OS

Threading in support libraries continues to be a source of bugs

And these libraries have complexity usually seen only in the OS
I page colors
I cache alignment
I Playing games with interrupts

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 12 / 30

Introduction

Plan A and B fail

Optimize all we want, we can not get the OS faster

Use OS bypass, end up recreating all the problems in the libraries

and making the HPC interface unusable for non-HPC apps

The price is too high to pay in either case

That is where we were last summer

Clearly in need of Plan C

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 13 / 30

Breaking out of the trap

One idea – Currying

Useful technique

f (x , y) = y/x

if you know y , e.g. if y is 2

Create g (x) s.t. g (x) = f (x , 2)

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 14 / 30

Breaking out of the trap

Exploiting Currying in the kernel interface

Leave information around about, e.g., past write behavior, past
addresses

take a chance that it will happen again

Keep results fo validaddr, fdtochan, etc., around

Add all the extra book-keeping needed to make it go

Results from tomorrow’s talk show that 32 addresses and a few
cached channels might be enough

need to clean them up when process exits

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 15 / 30

Breaking out of the trap

Currying alone is not enough

We are still back to intuiting program behavior

Kernel would have to look for patterns, cache arguments, etc.

and it still might be wrong

We got stuck on this problem last summer

At some point, Currying just looks like more micro-optimizations

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 16 / 30

Breaking out of the trap

Another approach: Synthesis[2]

Once a function and parameters are known

Generate code on the fly to implement that code

Can take this pretty far

In fact, to the point that repeated reading of a file turns into repeated
reading of a disk block

Not a great general approach because code synthesis can have bugs

and debugging is near-impossible

Perhaps new techniques such as those found in vx32 might help

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 17 / 30

What we did instead Five easy pieces

Create a struct which defines a fast path

struct Fastcall {
int scnum;
Chan *c;
long (*fun)(Chan*, void*, long, vlong);
void *buf;
int n;
vlong off;
};

Holds all you need to know about a read/write system call

a pointer to a function

Also add an empty Fastcall * to proc struct

Used as pointer to base of dynamically allocated array

Add counter to proc struct for size

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 18 / 30

What we did instead Five easy pieces

Modify syscall code

There is a path in syscall to cover ”syscall number too high”

Simple change: if number too high, search array of Fastcall structs

If found: up->fc[i].fun(ar0, up->fc[i].c, up->fc[i].buf,
up->fc[i].n, up->fc[i].off);

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 19 / 30

What we did instead Create fast path functions

Fast call setup function

Find data chan given ctl file fd and incref it

Do validaddr for (va, len)

Other validation as needed for device (e.g. offset)

Check for collisions in user-provided system call number

Realloc up->fc struct, fill in new data

Errors: read/write syscall errrors

Other errors related to fastcall

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 20 / 30

What we did instead Create fast path functions

Fast call function

Passed a channel, data pointer, length, offset just as a normal call

The overhead saved is in the generic read and write syscall

Fastcall function can use none, some, or all of these

E.g. on BG/P barrier, we only use the channel and the pointer

Key is that these are validated

void * always works because in Plan 9, segments never shrink

Would be a nightmare in Unix

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 21 / 30

What we did instead User mode setup

Special syscall code

TEXT mysyscall+0(SB),0,$8
MOVL a+0(FP),AX
BYTE $0xcd; BYTE $0x40
RET

Not a lot there

There’s only one argument: the system call number

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 22 / 30

What we did instead User mode setup

fastpath command

ctl = open(TEMP "/ctl", ORDWR);
cmd = smprint("fastwrite 256 %d 0x%p %d", fd0, data,
sizeof(data));
res = write(ctl, cmd, strlen(cmd));

Must have syscall number and fd

Typically there would a pointer and size

And maybe an offset

On success, invoke with mysyscall(256);

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 23 / 30

Performance

Blue Gene barrier network

Normal path: too long

More optimized path: 3.6 microseconds

Fastcall: 770 nanoseconds

Five-fold performance improvement

With very little code change

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 24 / 30

Performance

But it’s not a panacea

We modified the pipe device

Performance was no better and in some cases worse

Why? queues are slow, slow, slow

For slow interfaces, current interface is fine

Shouldn’t we fix those however?

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 25 / 30

Contributions, conclusions, future work

Kernels have been stuck in a rut

We know they’re too slow

People in HPC gave up years ago, moved to OS bypass

Kernel path has just gotten slower

App libraries have gotten more like kernels

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 26 / 30

Contributions, conclusions, future work

Key contribution: private system calls + compile-time
fastpath + run-time currying

Private system calls support the fastpath function

But could do much more; it is up to the driver

Compile-time fastpath eliminates Synthesis issues with runtime code
generation

Run-time currying parameterizes compile-time fastpath

Result, overall, is a new way to provide a fast path to programs

Allows us to focus optimizations where needed, ignore them where not

i.e. not all devices need this, so no need to modify them all

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 27 / 30

Contributions, conclusions, future work

Conclusions

We feel this can enable much higher I/O performance

Need faster and pipe device

Should be able to make fossil to venti to sdC path faster

Could we have a fastpath through the network stack?

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 28 / 30

Contributions, conclusions, future work

Next steps

Make kernel-based comms on supercomputers run as well as
OS-bypass-based comms

On non-supercomputers, provide IPC that makes user-level-servers
run as well as in-kernel servers

No fastpath for read done yet

Do not see that as a huge problem

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 29 / 30

Contributions, conclusions, future work

Further reading

Stephen Menke, Mark Moir, and Srikanth Ramamurthy.
Synchronization mechanisms for scramnet+ systems.
In PODC ’98: Proceedings of the seventeenth annual ACM
symposium on Principles of distributed computing, pages 71–80, New
York, NY, USA, 1998. ACM Press.

Calton Pu, Henry Massalin, and John Ioannidis.
The synthesis kernel.
Computing Systems, 1:11–32, 1988.

Ronald G. Minnich and John Floren and Jim McKie ()Using Currying and process-private system calls to break the one-microsecond system call barrierJanuary, 2009 30 / 30

	Outline
	Introduction
	Breaking out of the trap
	What we did instead
	Five easy pieces
	
	

	Performance
	Contributions, conclusions, future work

