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Introduction

The Problem

As we saw, we can figure out where the time goes

And we can fix some of it

But we can’t get there just by hacking the kernel
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Introduction

Timing example to one fast network
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Introduction

er, what?

Drop into device write

Allocate

Push into the queue

kick the tree

send it out

And all we really had to do was push it into a FIFO
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Introduction

So we killed the generality

But it’s still too slow

don’t seem to be able to get under 3-4 microseconds

fdtochan

Validaddr

Sort of an irreducible problem

Should we optimize these?
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Introduction
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Introduction

Should we optimize fdtochan and validaddr

Cache the 32 or so addresses most programs use?

Cache channels in the proc struct?

We explored these options

Makes code in port more complex

End up with management of va cache in proc struct
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Introduction

Such micro-optimization is a common approach

You see it all over, e.g., Linux

Lots of heuristics in the code

Which lead to creation of lots more timing-driven cleanup

Gets really complex

Can fail pathologically when programs do not follow common path

Kernel is trying to intuit your intentions

Got so crazy that Lustre just went ahead and added intents to ops

I.e. when you do ’walk’ you say ’and I intend to open this file after
the walk’

And all systems pay the costs of micro-optimization, even if only one
subsystem needs it
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Introduction

Some numbers from Linux

grep -r inline .—wc

69649 440053 6904168

grep -r likely .—wc

18668 108045 1538433

Note: includes likely and unlikely!

e.g. kernel/workqueue.c: if (unlikely(cpu >= 0))

kernel/workqueue.c: while (unlikely(ret < 0));

grep -r heurist . — wc

197 2052 20268
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Introduction

HPC gave up long ago

Around 1986, created interfaces that let programs write direct to
network[1]

These were later called OS bypass

OS did not, could not, know when or how network I/O occurred

Ubiquotous on top supercomputers

Problem: Any program, to get good performance, has to be rewritten
to use HPC networks

HPC network libraries starting to look like OSes
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Introduction

But OS bypass is a trap

Sure it works

Just need to write an OS in your library

But most interfaces run an OS anyway

Bypass host OS, but not bypass the network OS

Threading in support libraries continues to be a source of bugs

And these libraries have complexity usually seen only in the OS
I page colors
I cache alignment
I Playing games with interrupts
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Introduction

Plan A and B fail

Optimize all we want, we can not get the OS faster

Use OS bypass, end up recreating all the problems in the libraries

and making the HPC interface unusable for non-HPC apps

The price is too high to pay in either case

That is where we were last summer

Clearly in need of Plan C
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Breaking out of the trap

One idea – Currying

Useful technique

f (x , y) = y/x

if you know y , e.g. if y is 2

Create g (x) s.t. g (x) = f (x , 2)
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Breaking out of the trap

Exploiting Currying in the kernel interface

Leave information around about, e.g., past write behavior, past
addresses

take a chance that it will happen again

Keep results fo validaddr, fdtochan, etc., around

Add all the extra book-keeping needed to make it go

Results from tomorrow’s talk show that 32 addresses and a few
cached channels might be enough

need to clean them up when process exits
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Breaking out of the trap

Currying alone is not enough

We are still back to intuiting program behavior

Kernel would have to look for patterns, cache arguments, etc.

and it still might be wrong

We got stuck on this problem last summer

At some point, Currying just looks like more micro-optimizations
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Breaking out of the trap

Another approach: Synthesis[2]

Once a function and parameters are known

Generate code on the fly to implement that code

Can take this pretty far

In fact, to the point that repeated reading of a file turns into repeated
reading of a disk block

Not a great general approach because code synthesis can have bugs

and debugging is near-impossible

Perhaps new techniques such as those found in vx32 might help
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What we did instead Five easy pieces

Create a struct which defines a fast path

struct Fastcall {
int scnum;
Chan *c;
long (*fun)(Chan*, void*, long, vlong);
void *buf;
int n;
vlong off;
};

Holds all you need to know about a read/write system call

a pointer to a function

Also add an empty Fastcall * to proc struct

Used as pointer to base of dynamically allocated array

Add counter to proc struct for size
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What we did instead Five easy pieces

Modify syscall code

There is a path in syscall to cover ”syscall number too high”

Simple change: if number too high, search array of Fastcall structs

If found: up->fc[i].fun(ar0, up->fc[i].c, up->fc[i].buf,
up->fc[i].n, up->fc[i].off);
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What we did instead Create fast path functions

Fast call setup function

Find data chan given ctl file fd and incref it

Do validaddr for (va, len)

Other validation as needed for device (e.g. offset)

Check for collisions in user-provided system call number

Realloc up->fc struct, fill in new data

Errors: read/write syscall errrors

Other errors related to fastcall
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What we did instead Create fast path functions

Fast call function

Passed a channel, data pointer, length, offset just as a normal call

The overhead saved is in the generic read and write syscall

Fastcall function can use none, some, or all of these

E.g. on BG/P barrier, we only use the channel and the pointer

Key is that these are validated

void * always works because in Plan 9, segments never shrink

Would be a nightmare in Unix
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What we did instead User mode setup

Special syscall code

TEXT mysyscall+0(SB),0,$8
MOVL a+0(FP),AX
BYTE $0xcd; BYTE $0x40
RET

Not a lot there

There’s only one argument: the system call number
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What we did instead User mode setup

fastpath command

ctl = open(TEMP "/ctl", ORDWR);
cmd = smprint("fastwrite 256 %d 0x%p %d", fd0, data,
sizeof(data));
res = write(ctl, cmd, strlen(cmd));

Must have syscall number and fd

Typically there would a pointer and size

And maybe an offset

On success, invoke with mysyscall(256);
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Performance

Blue Gene barrier network

Normal path: too long

More optimized path: 3.6 microseconds

Fastcall: 770 nanoseconds

Five-fold performance improvement

With very little code change
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Performance

But it’s not a panacea

We modified the pipe device

Performance was no better and in some cases worse

Why? queues are slow, slow, slow

For slow interfaces, current interface is fine

Shouldn’t we fix those however?
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Contributions, conclusions, future work

Kernels have been stuck in a rut

We know they’re too slow

People in HPC gave up years ago, moved to OS bypass

Kernel path has just gotten slower

App libraries have gotten more like kernels
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Contributions, conclusions, future work

Key contribution: private system calls + compile-time
fastpath + run-time currying

Private system calls support the fastpath function

But could do much more; it is up to the driver

Compile-time fastpath eliminates Synthesis issues with runtime code
generation

Run-time currying parameterizes compile-time fastpath

Result, overall, is a new way to provide a fast path to programs

Allows us to focus optimizations where needed, ignore them where not

i.e. not all devices need this, so no need to modify them all
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Contributions, conclusions, future work

Conclusions

We feel this can enable much higher I/O performance

Need faster and pipe device

Should be able to make fossil to venti to sdC path faster

Could we have a fastpath through the network stack?
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Contributions, conclusions, future work

Next steps

Make kernel-based comms on supercomputers run as well as
OS-bypass-based comms

On non-supercomputers, provide IPC that makes user-level-servers
run as well as in-kernel servers

No fastpath for read done yet

Do not see that as a huge problem
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Contributions, conclusions, future work

Further reading

Stephen Menke, Mark Moir, and Srikanth Ramamurthy.
Synchronization mechanisms for scramnet+ systems.
In PODC ’98: Proceedings of the seventeenth annual ACM
symposium on Principles of distributed computing, pages 71–80, New
York, NY, USA, 1998. ACM Press.

Calton Pu, Henry Massalin, and John Ioannidis.
The synthesis kernel.
Computing Systems, 1:11–32, 1988.
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