
KNX Implementation for Plan 9

Gorka Guardiola Múzquiz
Enrique Soriano Salvador
Francisco J. Ballesteros



The problem

• Home full of devices/actuators:
– Tv, dvd player, washing machine…
– Thermostat, light switches
– ADSL gateways and wifi networks
– More and more sensors/actuators coming



We want

• Add some more sensors
• Control everything from everywhere



How

• Small computers (one? many?)
– Gumstix/sheevaplug/beagleboard/…

• Networks (wifi when possible)
– We need power, so sometimes a cable is

ok as long as it is just one
• Sensors? Actuators?…



Sensors/Actuators

• Tried X10 (network is the power cable)
– Doesn´t work for us
– Power networks are bad in Spain

• We wanted to try Knx (its own bus
cable/radio)
– Write a USB driver for the coupler
– Program the devices from the computer
– Use them
– How hard can it be? (Spoiler: quite)



KNX

• Used to be EIB (European installation
bus)

• Defines a bus and protocols (all levels)
• The gateways available simply forward

packets
• We want to export them as 9P using a

small computer (gumstix, sheeva…)



KNX

• Way to program devices so that they change
their behaviour, talk to each other…

• Like a kind of weird assembler java
• We are not interested in this, we have an

external controller, devices: as dumb as
possible

• We do want to configure the addresses
• One object per interface in a device for us

(each switch, each sensor…)



Emi

• External message interface
– Packet definition for talking with devices
– In the bus you get Imi (internal message

interface)
– Most of it is not byte aligned (sigh!)



KNX USB coupler

• It shows itself as an HID
• Two 64 bytes interrupt endpoints

(in/out) plus ctl
• Two parts

– Bus Access Server (Features)
– One or more Emi servers



KNX USB



KNX USB

• Features, for configuring the device
itself (layer, Emi type…)

• Emi servers for talking to the devices
– The coupler itself has an address and is

like a device



Network protocol stack

• They have everything possible
• Link/Transport/Network
• ISO request/confirmation/indication
• Confirmation is local (what is the point?)



Network protocol stack

• Emi server configured as link layer (almost
transparent, cannot see other connections)

• Will zero the layers under (if configured
above)

• To prevent race conditions
• While configuring addresses (like an inverse

dhcp), we would need to switch
• We manage everything



Network protocol stack

• We ignore confirmations
• We use one thread per device (and

some extra)
• We do Stop and Wait
• We keep the temporal state in the stack



Procs/Threads



Threads

• Usbreader/usbwriter: raw HID packets
• Emireader/emiwriter: raw emi packets
• Local: emi packets with local origin
• Remote: emi packets multicast, no address
• Management: non-emi (Bus access features)
• Objects: A thread representing each

configured seen object (we have a unique
global address space address/object)

• One object per object + an object per device



What we can do

• 4500 LOC after
• We can configure the devices (mainly

the addresses of objects and devices)
• We can use them
• We can sniff conectionless messages



What we can´t do

• Working on the filesystem (no 9P server
yet)

• We cannot completely detect the
available objects

• We cannot program the devices
themselves (not our aim)



Q/A?


