KNX Implementation for Plan 9

Gorka Guardiola Muzquiz
Enrique Soriano Salvador
Francisco J. Ballesteros

The problem

» Home full of devices/actuators:
— Tv, dvd player, washing machine...
— Thermostat, light switches
— ADSL gateways and wifi networks
— More and more sensors/actuators coming

We want

 Add some more sensors
» Control everything from everywhere

How

* Small computers (one? many?)
— Gumstix/sheevaplug/beagleboard/...

* Networks (wifi when possible)

— We need power, so sometimes a cable is
ok as long as it is just one

e Sensors? Actuators?...

Sensors/Actuators

* Tried X10 (network is the power cable)
— Doesn’t work for us
— Power networks are bad in Spain

* We wanted to try Knx (its own bus
cable/radio)
— Write a USB driver for the coupler
— Program the devices from the computer
— Use them
— How hard can it be? (Spoiler: quite)

KNX

Used to be EIB (European installation
bus)

Defines a bus and protocols (all levels)

The gateways available simply forward
packets

We want to export them as 9P using a
small computer (gumstix, sheeva...)

KNX

Way to program devices so that they change
their behaviour, talk to each other...

Like a kind of weird assembler java

We are not interested in this, we have an
external controller, devices: as dumb as
possible

We do want to configure the addresses

One object per interface in a device for us
(each switch, each sensor...)

Emi

» External message interface
— Packet definition for talking with devices

— In the bus you get Imi (internal message
interface)

— Most of it is not byte aligned (sigh!)

KNX USB coupler

* It shows itself as an HID

* Two 64 bytes interrupt endpoints
(in/out) plus ctl

* Two parts
— Bus Access Server (Features)
— One or more Emi servers

KNX USB

USB

Features

EMI1

/\

EMI2

KNX USB

» Features, for configuring the device
itself (layer, Emi type...)
* Emi servers for talking to the devices

— The coupler itself has an address and is
like a device

Network protocol stack

They have everything possible
Link/Transport/Network

ISO request/confirmation/indication
Confirmation is local (what is the point?)

Network protocol stack

Emi server configured as link layer (almost
transparent, cannot see other connections)

Will zero the layers under (if configured
above)

To prevent race conditions

While configuring addresses (like an inverse
dhcp), we would need to switch

We manage everything

Network protocol stack

We ignore confirmations

We use one thread per device (and
some extra)

We do Stop and Wait
We keep the temporal state in the stack

Procs/Threads

Object

reader

»| usbreader ——»| emireader

Object
B
writer - usbwriter |- emiwriter
proc
Local
management
Remote

KNX proc

Threads

Usbreader/usbwriter: raw HID packets
Emireader/emiwriter: raw emi packets

Local: emi packets with local origin

Remote: emi packets multicast, no address
Management: non-emi (Bus access features)

Objects: A thread representing each
configured seen object (we have a unique
global address space address/object)

One object per object + an object per device

What we can do

4500 LOC after

We can configure the devices (mainly
the addresses of objects and devices)

We can use them
We can sniff conectionless messages

What we can't do

* Working on the filesystem (no 9P server
yet)

* We cannot completely detect the
available objects

* We cannot program the devices
themselves (not our aim)

Q/A?

