
Context
Where is the time going?

devtrace
Using it

Summary

Measuring kernel throughput on Blue Gene/P with
the Plan 9 research operating system

Ronald G. Minnich, John Floren, Aki Nyrhinen

Fourth International Workshop on Plan 9, 2009

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Outline

1 Context

2 Where is the time going?
Related Work

3 devtrace

4 Using it

5 Summary

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Context

Porting Plan 9 to supercomputers

Because it's a clean, small system

Flexibility comes in at user level

One question of the DOE work: can we remove OS bypass if
the kernel is fast enough?

Simulations said �maybe�

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Simulation result

Using IBM SystemSim, boot Plan 9, and run a program that
does a single write

acid: 0x0119dd39 n = r;==>/9k/port/sys�le.c:790

acid: 0x0119dd3a n = r;==>k/port/sys�le.c:790

acid: 0x0119dd3b o� = ~0LL;==>9k/port/sys�le.c:792

acid: 0x0119dd3c o� = ~0LL;==>9k/port/sys�le.c:792 etc.

About 600 ticks

About 180 lines

Seemed like it would be quite fast

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

But not as fast as we want

On simulation we had thought the path from user to kernel to
wire was fast

Certainly faster than MPI libraries (or so the MPI guys told us)

Measurement on real hardware showed it was actually slower
than sim by too much

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Example: global barrier driver

dcrput(p->set, 1); /* signal */

That's all there is to it

Across 128K CPUs, this op takes about 125 ns.

Other networks are similar

HPC approach: just let programs do it directly

Our approach: go through a fast kernel

But it was not fast enough ... took a signi�cantly longer time

What's an acceptable time? Has to be well under 1
microsecond

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Related Work

Where is all the time going?

Did not have a way to trace, function-by-function, where time
was spent, and who called whom

Can do pro�ling but that is really a �fraction of time spent�

Hard to see relationships between events

Pro�ling is a histogram tool

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Related Work

We would rather see

Who calls whom

What fraction of time I spend in �x� before I call �y�

Not just �how much time spent in �x� and �y�

Need to see relationships and ordering of calls

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Related Work

Other work

dtrace[1], dkm, neat hardware hacks[3], kprobes[2], djprobes,
jprobes[4], kernel markers,
ftrace[http://lwn.net/Articles/270971/]

First time I saw it was on SunOS ca. 1988, which used a
kernel markers like approach

Kernel markers are a lot of work, requires annotating
thousands of points to really get coverage

My reading: Linux community may �nd function tracing is
�good enough� most of the time (see: ftrace)

MacOS, however, has adopted dtrace, which is extremely
powerful

dtrace has two modes: enable always-compiled-in function
traces, or:

Rewrite running kernel binary for more complex tracing

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Related Work

Some tracing issues

The obvious one: overhead

Hence terms like �invasive� and �sample-based�

The less obvious one: you just changed a kernel binary

Was that safe?

Do all the CPUs know?

When is it safe to change it back? (answer: maybe never)

SMP issues

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Implementation

Starting from earlier Dynamic Kernel Modi�er work (2001?)

Code rewriting at runtime

Modify code by moving blocks and replacing them with jumps

Given an address, rewrite the code at that address to jump to
a �logger�

If you know entry and exit addresses, you can trace a function

Gets a little tricky if you don't want to write an
object-code-understander-relocater for CISC � and I don't

I only moved code known to be �safe� to move, i.e.
register-register moves etc.

See paper for details

GCC function prologues are only a few speci�c types, so was
easy � and you only need to move 5 bytes, around instruction
boundaries

8c is not so gentle

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Implementation

DKM code inserted

Rewritten code with entry, exit modified

jump to buffer

function body

jump to buffer

Call user
trigger code

function entry

Jump to body

Call user function

function exit

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Implementation

The fun bits

Relocated code has to be position-independent

There is stack �xup:

Have to maintain the stack correctly so calls from this function
work

Have to ensure that the function, on exit, returns to the jump
to your exit code

i.e. we don't rewrite the exit code, we only rewrite the entry
code

It gets messy but it's doable

And it's fun to disable gettimeofday() and watch how things
slowly fall apart ...

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Implementation

Version 1 (Aki and Ron)

Ron did an early cut based on the Dynamic Kernel Modi�er
work from 2001

At IWP9 2, Aki adapted it to the Power PC on Jim's desk

We then further took it over to Blue Gene/P

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Implementation

IWP9 2 work

Short form: on PPC it was pretty high overhead (although
object-code-understander was not an issue)

Worse, it required rewriting bits of the kernel memory image at
run time

Even worse, there is never a guarantee that you know when
you can turn it o�[4]

Much less turn it on: are you sure that core 1 is not running
code while you are busy rewriting it?

You can't ensure it by just making sure you write less than one
cache line of code!

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Implementation

Version 2 goals

Easily build into kernel

Easy to control

Can reliably turn tracing on and o�

No kernel rewrite

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Implementation

Devtrace in a nutshell

Plan 9 style text control

Textual output

No kernel rewriting

Tracing on/o� is always safe

Logic analyzer style interface

Not as powerful as dtrace

Not as informative as ftrace (I think?)

Ftrace info can be added

Could produce dtrace format data for dtrace function
processing

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Implementation

Devtrace in a nutshell

Plan 9 style text control

Textual output

No kernel rewriting

Tracing on/o� is always safe

Logic analyzer style interface

Not as powerful as dtrace

Not as informative as ftrace (I think?)

Ftrace info can be added

Could produce dtrace format data for dtrace function
processing

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Implementation

Devtrace in a nutshell

Plan 9 style text control

Textual output

No kernel rewriting

Tracing on/o� is always safe

Logic analyzer style interface

Not as powerful as dtrace

Not as informative as ftrace (I think?)

Ftrace info can be added

Could produce dtrace format data for dtrace function
processing

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Implementation

Devtrace in a nutshell

Plan 9 style text control

Textual output

No kernel rewriting

Tracing on/o� is always safe

Logic analyzer style interface

Not as powerful as dtrace

Not as informative as ftrace (I think?)

Ftrace info can be added

Could produce dtrace format data for dtrace function
processing

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Implementation

Devtrace in a nutshell

Plan 9 style text control

Textual output

No kernel rewriting

Tracing on/o� is always safe

Logic analyzer style interface

Not as powerful as dtrace

Not as informative as ftrace (I think?)

Ftrace info can be added

Could produce dtrace format data for dtrace function
processing

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Implementation

We use -p infrastructure

When you invoke ?l with -p, functions look like this:

0x00001020 CALL _profin(SB) f+0x5

0x00001025 MOVL a+0x0(FP),AX f+0x9

0x00001029 ADDL $0x5,AX f+0xc

0x0000102c CALL _profout(SB) f+0x11

0x00001031 RET

pro�n/out give you arbitrary hooks

Call sequence only lets you see the pc, no args

Just gets a histogram, no time relationships

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Implementation

We just de�ne our own pro�n

TEXT _profin(SB), 1, $0

TESTL probeactive(SB), AX

JZ inotready

MOVL 4(SP),AX

PUSHL AX

MOVL 4(SP),AX

PUSHL AX

CALL profin(SB)

POPL AX

POPL AX

inotready: RET

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Implementation

and profout ...

TEXT _profout(SB), 1, $0

PUSHL AX

TESTL probeactive(SB), AX

JZ notready

MOVL 4(SP),AX

PUSHL AX

CALL profout(SB)

POPL AX

notready: POPL AX

RET

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Implementation

A few details

The stack frame already has some things you want

Caller PC and some args

Also, on some machines, one register has the ��rst parameter�

Problem is to get them into a machine-independent format

On x86, can trash ax on entry; must save it on return

on PPC, must save it in both directions

Finally, it's important to disable tracing on certain functions

Such as pro�n assembly and C code

And anything the pro�n C code calls

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Building into your kernel

contrib/rminnich/9.probe

Bind these directories over your /sys/src/9

Note I left v1 code in there for your viewing pleasure

mk 'CONF=pcprcpf'

boot kernel and you're ready to try it out

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Trying it out

See the 'probeit' �le in 9.probe

#!/bin/rc nm pc/9pcprcpf | grep $1 |

awk '{print "probe 0x" $1 " new "$3}'

> /dev/probectl

That script will set up tracing for one symbol at entry

Example in 'probeit' shows a real trace

Probing syschdir and namec

Showing arguments and so on

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Output

E f01b626e 000000226c00e7d4 00009ed0 00000000 00000000 00000000

E or X

PC

Time in ticks

PID

Three args for E; return value for X

Fixed, easy to parse format

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Viewing it

poolallocl
poolalloc

smalloc
ptealloc

pio
fixfault

fault
faultamd64

trap
trim

memmove
copypage
duppage
i8250kick

uartkick
i8250interrupt

mallocz
poolmsize

msize
_allocb
allocb
qwrite

putstrn0
write

syspwrite
syscall

validname0
validnamedup
_fmtdispatch

dofmt
vsnprint

sprint
newpath
poolfreel
poolfree

free
devattach

kstrdup
growparse

parsename
devgen

devwalk
ewalk

copypath
uniquepath

addelem
pathclose
chanfree

cclose
walk

devopen
namec

sysopen
snprint

read
syspread

fdclose
sysclose
closefgrp
closergrp

_strfmt
freepte
putseg

’plotme’ using 1:2:3:ytic(5):xtic(1)

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

What we learned

We were able to measure where the time was spent

There were some real time-wasters (incref/decref)

There were some problems hard to see a way around (okaddr,
fdtochan)

We could go to elaborate and complex translation and other
caching to try to shorten time

But that seems the wrong path

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Summary

devtrace can let you see where the time is going

Simple textual control and data interface

You can see relationships between calls

Exploits existing pro�ling architecture

Thanks to SP9SSS for help and advice

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Can we make it less intrusive?

Yes. And safer.

Consider this code:

a: JMP 2f

call profin

2: ...

It becomes:

EB05 a: jmp 2f

E8F9FFFFFF call profin

C3 ...

So, actually, we can change one byte and enable/disable
pro�ling on this function

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Exit

ret

call profout

ret

Same deal: NOP and RET are same size, one byte

So one-byte change can enable/disable profout in this function

And it's easy to �nd the code signature!

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Have to modify 8l

8l builds �instructions� (prg()) as part of creating linked binary

They form a linked list

if pro�ling is enabled, 8l does a �nal-pass walk of list and
inserts calls to pro�n/profout on function entry/exit

How do you know what is entry/exit?

prg() struct is marked as such

So, given this least, need only modify how code is inserted

In code shown below, we have the current entry/exit pointed
to by 'p'

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Modifying 8l

Copy doprof() in obj.c to doprof2

q = prg();

q2 = prg();

q->line = p->line; q->pc = p->pc;

q->link = p->link; p->link = q2;

q2->link = q;

q2->line = p->line; q2->pc = p->pc;

q2->as = AJMP; q2->to.type = D_BRANCH;

q2->to.sym = p->to.sym; q2->pcond = q->link;

p = q;

p->as = ACALL; p->to.type = D_BRANCH;

p->pcond = ps2; p->to.sym = s2;

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Context
Where is the time going?

devtrace
Using it

Summary

Return case

/* * RET */

q = prg();

q->as = ARET; q->from = p->from; q->to = p->to; q->link = p->link; p->link = q;

/* * JAL

profout */ p->as = ACALL; p->from = zprg.from; p->to = zprg.to; p->to.type = D_BRANCH; p->pcond = ps4; p->to.sym = s4;

p = q;

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

Appendix For Further Reading

For Further Reading I

B.M. Cantrill, M.W. Shapiro, and A.H. Leventhal.
Dynamic instrumentation of production systems.
pages 15�28, Boston, MA, USA, 2004.

R. Krishnakumar.
Kernel korner: kprobes-a kernel debugger.
Linux J., 2005(133), May 2005.

Andrew McRae.
Hardware pro�ling of kernels, or: How to look under the hood
while the engine is running.
1993.

Satoshi Oshima.
Djprobes status.

Ronald G. Minnich, John Floren, Aki Nyrhinen Plan 9 trace device

	Context
	Where is the time going?
	Related Work

	devtrace
	

	Using it
	Summary
	Appendix
	Appendix
	

