
Ssh

Mechiel Lukkien

mechiel@xs4all.nl

ABSTRACT

Ssh* is a client for the secure shell 2 protocol, written in Limbo for
Inferno. It also includes sftpfs, an sftp client that translates between sftp
and styx/9p messages. They currently support most of the popular key
exchange, authentication, encryption and digesting methods used by the
ssh protocol, but is not yet ready for daily use. No code for a server has
been written yet.

Introduction

The ssh project aims to bring secure shell 2 support to Inferno. It has both a secure
shell client for executing a shell or other commands on an ssh server and an sftp client
that gives access to files on the ssh server. No code for an ssh server or a program like
Plan 9�s sshnet(4) for using the server�s TCP stack has been written. At the time of writ
ing, the basics work, i.e. logging in to an ssh server; basic sftp works too. Most of the
standard key exchange, authentication and encryption and digest methods are sup
ported: Diffie−Hellman key exchange with rsa and dss host verification; password and
rsa and dsa public-key authentication; sha−1 and md5 for digests; and des−cbc, 3des−
cbc, aes (with 128, 192 or 256 bit keys, in cbc or ctr mode), arcfour (with 128 or 256 bit
keys) and idea (though untested because no one uses it). New factotum(4) support han
dles authentication for the public-key methods. The two major limitations are:

" Channel windows are not updated. Both client and server maintain a window for
each communication channel on the ssh connection. The window indicates how
many bytes the other side is willing to consume, thus how many bytes can be writ
ten without blocking. A large initial window is set by the current code, but the win
dow is never updated during the connection. This works for most types of commu
nication, but will block when all data from the initial window has been consumed.

" Session key renegotiation has not yet been implemented. During connection set
up, encryption and digest keys are exchanged between the client and server (and in
the process the client verifies the server�s host key). These are used to encrypt and
sign the protocol packets. The protocol specification dictates that keys be renego
tiated after they have been used for some time or for a certain number of encryp
tion operations. We currently never do that. Thus, when the server wants new
keys, the connection will break.

The protocol

Some details about the protocol. The protocol is specified in RFCs 4250-4254. Later
RFCs clarify, extend and/or deprecate functionality. The protocol is logically layered,
with a transport, user authentication and connection �layer�. These layers are more like
phases of the connection. Protocol messages are not actually layered or nested, all have

* Ssh, http://www.ueber.net/code/r/ssh

the same packet format with one set of simple encoding rules. Sftp is not part of the
secure shell protocol. It can be used outside of ssh too, though this is uncommon. It
can be implemented as a separate program that speaks the sftp protocol over a channel
by provided by an ssh connection. Sftp is only described in expired work in progress
RFC drafts The most recent versions of those drafts should be ignored: they are not
commonly implemented and only add complexities such as ACL schemes.

Ssh provides secure communication between two systems. The server accepts incoming
connections and plays the role of the server. The connection goes through various
stages: Key exchange (including host verification), user authentication and finally nor
mal operation during which communication channels can be created and data sent and
received on those channels. An ssh client creates a channel and requests a remote ser
vice, typically a login shell. The server starts this service and essentially connects the
channel�s communication descriptors to the shell�s standard input, output and error.
The client does a similar thing. The protocol allows many channels to be opened on a
single ssh connection. For example for multiple shells, or a shell and an sftp connec
tion.

The sftp service can be requested on a channel, with the same mechanism used to start
a shell. The sftp service reads sftp protocol requests from the channel and writes the
sftp responses to the channel. Sftp maps surprisingly directly to styx, but (as most such
protocols) cannot do all of a wstat operation atomically, needing multiple sftp requests.
Sftpfs does not wait for an sftp response before sending the next sftp request, so has
some accounting to do (e.g. for flushes, and the two-stage wstat).

Additional services have been specified: X11 forwarding, authentication agent forward
ing. No support for those is planned.

Future work

The two missing bits of important functionality have been explained earlier. Many more
small ones exist and it is likely that large chunks of code need to be rewritten. The
design might need to change, as a consequence of how it was developed: I wanted to
get some useful packets exchanged with a server as soon as possible, so I dialed an ssh
server (running OpenSSH) and saw it sent a banner. Finding how to respond to that ban
ner was easy, ssh packets followed soon. By the time encryption was needed, generic
packet parsing and packing code was usable. In the mean time I had realised I could
enable debugging output (including protocol message printing and diagnostics) on the
OpenSSH server. It would tell me if packets were malformed, unexpected, etc. So the
OpenSSH server has been a great help during development. This approach resulted in
quick initial results, and the protocol was learned along the way. It did not result in very
clean code though, but that will be fixed.

Both the ssh client and sftp client need lots of polishing. At some point a terminal emu
lator for Inferno would be useful, to be able to use curses programs on unix systems.

Other missing features:

" Ssh version 1 is not supported. It is being phased out on the internet, few people
still use it and every new ssh server deployment supports ssh version 2 and often
refuses to speak ssh version 1 because it is less secure. Support for version 1 will
probably not be implemented.

" The reasonably popular blowfish encryption algorithm is not supported yet. It
seems there are various versions of blowfish in use, with different endianness for
data and/or keys. Newer key exchange methods that use SHA−2 are also not sup
ported: Inferno does not yet have a SHA−2 library. Both should be fixed eventu
ally, though there is no hurry.

" The ssh protocol supports compression of the data packets with the deflate algo
rithm. Ssh will not support it any time soon because Inferno�s deflate library does

not support flushing the compressed buffer on command, which is required.

" There is currently no ssh server, or sshnet-like program. Both are useful and may
be implemented in the future.

" Host key fingerprints, used to verify that the host is who it claims it is, are stored
in a file, $home/lib/sshkeys. Since this is security sensitive information, use
and management of these keys should perhaps be handled by a factotum-like pro
gram.

" Inferno�s factotum currently always prompts the user for credentials when a key
was requested but none found. Ssh tries rsa and dss keys first, then normal pass
words. In the quite common case of wanting to authenticate by password, this
results in two unwanted factotum key requests.

