
KNX Implementation for Plan 9

Work In Progress

Gorka Guardiola Múzquiz
Enrique Soriano Salvador

Francisco J Ballesteros

Laboratorio de Sistemas
Universidad Rey Juan Carlos

ABSTRACT

We are working on a project to interconnect and control home
devices from a hive of mini computers. We have started with sensors and
actuators for the home. In order to do this we have written an implemen
tation of the Knx [1] protocol stack for Plan 9. We plan to use gumstix
computers and therefore we are porting Plan 9 to this platform.

Introduction

Nowadays homes are full of devices begging to be interconnected and controlled. Big
screens, audio devices, computers and computer peripherals, switches, lights, sensors
for temperature and movement, alarms and possibly many others depending on the
tastes and economic possibilities of the owner. We envision a network interconnecting
these devices and a computer controlling them to make them an integral system which
gives the user a seamless experience.

We are working on a project to export these devices as filesystems using small
minicomputers. As part of this project we have started a port of Plan 9 to the gumstix (a
small arm pxa270 based minicomputer) and written a port of the Knx protocol stack to
Plan 9. This article describes the Knx usb driver we implemented and the development
of a Knx protocol stack under Plan 9, and its filesystem interface. The filesystem inter
face is still under development.

Knx

Knx is the successor of EIB, European Installation Bus. Knx lets you connect a network of
sensors, actuators and small devices using a Knx bus, which defines various physical
mediums including a dedicated cable, and an insanely complicated protocol. Knx is an
standard supported by many companies and it is easy to find sensors and actuators
which have been reported to be quite robust and which consume very low power.

We have finished the Knx protocol development and we are now working on a good
interface to export the filesystem.

Most of the available devices to control Knx networks just export the network
through a gateway which lets you inject packets into the bus. This approach just trans
late the difficulties of programming the Knx protocol adding another layer without
abstracting the problem itself.

We plan to export a synthetic filesystem in the Plan 9 tradition, which will make it
much more simple to control the devices. Also, the devices themselves can run many
different "applications", because they can be programmed in some metalanguage



 2 

combined with assembler. We want to control Knx devices as much as possible, but we
are not particularly concerned in programming the devices themselves, just with config
uring and controlling them.

The devices can be programmed using the standard tools to program them with
the default binaries provided by the vendors as we have intelligence in the computer to
do the rest for us. Once programmed, the devices offer "objects", data types with a net
work address which can be accessed through the devices or through their special object
address. We plan to have unique object addresses throughout the device and the net
work if possible. This way, we can control each device and its properties from a com
puter (the gumstix or the client to its file server).

Knx USB device

Knx defines a protocol for a USB [2] "coupler" to connect to the bus and act as a bridge
between the bus and a PC. The first thing we had to do was write a driver to control the
"coupler" itself.

The Knx USB devices provides us with two 64 bytes interrupt endpoints besides the
control endpoint, used for communicating with the device. The devices announces itself
as an HID [3] device and uses HID report headers and bodies format. The sequence low
nibble is used for multisequence packets, but we have not found a device for which we
needed to implement this.

The USB device has two parts, the Bus Access Server (Features) and (possibly) vari
ous Emi Servers. Emi, external message interface is the name of the protocol as seen
outside of the bus. The Knx messages have two representations internal (Imi) and exter
nal (Emi) and the Emi Servers translate between one and the other. The Emi Servers are
more than that, they filter and rewrite incoming packets depending on their layer they
are configured to understand and the address of the packet. Essentially they implement
all the protocol stack. There are two kind of packets which we send to the USB device in
the report body. Packets directed to the Bus Access Server, which decides which Emi
Server to turn on and how to configure it, and Emi packets which are intended to be sent
to the BUS.

Knx network protocol

Knx uses the ISO request, confirmation, indication structure for its communications.
Each time a request message is sent the sender receives a confirmation from his local
Emi Server and the receiver receives an indication. We have ignored confirmations as
they are generated locally (so they do not confirm anything) and when we are waiting for
a response we always set a timeout, in some cases defined by the standard and in many
other cases just a sensible limit. There are also retransmissions, so there is no point in
confirmations at all.

The Knx standard defines a the whole link/transport/network layer and modes for
each of this layers (and extra routing properties) for the Emi Server. We configured the
Emi Server in the (link layer, bus monitor), which is an essentially transparent mode so
that we could have complete control and see what was exactly happening with the
devices themselves. Even in this mode connected communications between remote
devices are not seen, which makes it difficult to program a real sniffer (other than con
tinuously changing address). In any case, at least using the lowest possible mode lets
us do broadcast to program an address an in general program operations without hav
ing to change modes continuously at the risk of creating a race condition and losing
packets. When the Emi Server is configured in an higher layer the packets arrive with the
upper part erased (zeros) or do not arrive at all.



 3 

As a consequence of having the device configured at the lower layer, we see broad
cast packets, and other packets we could ignore (confirmations), and we have to deal
ourselves with retransmissions and timeouts.

The Knx stack

We created two I/O procs to take care of the blocking I/O of the USB endpoints.
The rest of the protocol stack is composed of threads all living in the same proc.
Usbwriter and usbreader are threads representing the I/O procs and which serve
a channel each. These threads convert the raw USB packets int structs, taking care of the
HID report headers and the Knx transport headers. This interface permits the stack to
send Bus Access Feature packages whenever needed and inject them at low level while
at the same time not having race conditions with other layers of the stack.

�������������	������ 
��������
�����	�� �������������	��
�����	������	���������	��������	 ��� ����

Figure 1: Architecture of the Knx driver.

Two other threads, emireader and emiwriter read from these channels,
decode and interpret the packets and send them to the appropriate thread. There is an
another thread representing each addressable Knx object plus three extra threads,
Management, Local and Remote. Management is the thread representing raw non-emi
packets, essentially Bus Access Features. Local injects emi packets in raw, normally
used to configure parts of the Emi Server. Remote is used for injecting raw Emi pack
ages into the bus for things like configuring devices which have no address yet.

We have implemented stop and wait, taking care of retransmissions as part of the
sending functions, to make things simpler. At the moment, there is no need to optimize
throughput in any case.

Current state and Future work

The protocol stack as it is lets us already program addresses for the devices and control
all the devices we have. We can read the state of switches, control binary outputs and
read the state of temperature and light sensors. The Gumstix port is already working.
The only work left is some minor fixes and device drivers. The ethernet device driver is
working in Inferno and has to be ported to Plan 9.

We cannot (yet) discover the objects within a device we have not programmed our
selves. We cannot program Knx devices, though this was never our goal it would be
nice to be able to write a binary image on them to program them. A filesystem to con
trol the objects in under way. We plan to have a directory representing each of the
object threads, though we are working on the how many files it will contain and their



 4 

semantics.

References

1. K. Association, KNX Association Official Website, http://www.knx.org.

2. Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC and Philips, USB 2.0 Speci
fication, 2000.

3. U. I. Forum, USB Device Class Definition for Human Interface Devices (HID) , 2001.


