
A new boot process for Plan 9 from Bell Labs

Iruatã Souza
iru.muzgo@gmail.com

ABSTRACT

We describe a new way of booting Plan 9 in which no special bootstrap
program is involved; rather, the bootstraping is done by just another Plan
9 kernel. In this way, we can take advantage of the full range of devices,
networks, and file systems supported by the operating system.

1. Motivation

The Plan 9 4th Edition boot process has been the target of critics from the Plan 9 users
and its replacement has been discussed for years [1]. We tried to synthesize these dis­
cussions and ideas in the form of a rewrite of the relevant boot routines.

2. Introduction

Plan 9 boots on PCs with help from an auxiliary kernel called 9load(8). Such a kernel
does not pretend to be general on its purpose and does not share its source code tree
with the other Plan 9 kernels. This approach has shown limitations and in order to have
these limitations addressed, fundamental changes needed to be made; the current sta­
tus and future directions of the new Plan 9 boot process is hereafter discussed.

3. Plan 9 on PC

In order for this paper to be self-contained, this section presents the minimum required
information about Plan 9 running on computers of the x86 architecture.

3.1. Storage

We assume the storage medium to be some form of local disk. Such a disk can be
divided into slices/partitions, in which case it is said to be partitioned.

The slice reserved for Plan 9 (or the whole unpartitioned disk) is itself divided into Plan
9 partitions. A standard Plan 9 installation taking the whole disk and using fossil(4) as
the root file sytem layouts the disk as follows (Begin and End in sector units):

__________________
The code implementing the solution was initially written as part of the Google Summer of Code 2009

program.



Name Start End Description
9fat 63 − Plan 9 kernels and boot configuration
nvram − − non−volatile ram for PCs
fossil − − fossil(4)
swap − − swap area

3.2. Boot

After the Power On Self Test, the BIOS loads sector zero of the disk into physical mem­
ory address 0x7C00 and jumps to that location. If the disk is partitioned, that sector will
contain the Master Boot Record (MBR). The MBR searches the master partition table for
the active partition, loads that partition�s Partition Boot Sector (PBS) into 0x7C00, and
jumps there. If the disk is not partitioned, sector zero is the PBS itself.

3.3. PBS

The partition boot sector starts by jumping over its Boot Parameter Block (BPB) [2]. Its
BPB ID field is edited by format(8) to contain the starting sector of the root directory of
the FAT filesystem to where it is being installed. That directory is searched for a file
named �9LOAD �. If the desired file is found, the PBS calls BIOS interrupt 13 [4] to
read the file�s contents to memory 0x1000 physical and far jumps there.

PBS is hardcoded as a FAT boot sector and only understands FAT filesystems. Then it
can only be used if a FAT is present at the beginning of the Plan 9 disk slice. Because of
the x86 segmentation used by the PBS and the BIOS interrupt, 9load(8) has a size limit
of approximately 1MB.

3.4. 9load(8)

9load(8) is the PC bootstrap program: an auxiliary kernel with its own source code tree.
Its main purpose is running a Plan 9 kernel. For this purpose to be met, 9load(8) needs
to a) enable 32-bit protected mode, b) load boot configuration, and c) find and load a
kernel.

Plan9.ini(8) is the boot configuration file for PCs. 9load(8) probes storage media search­
ing for files plan9.ini and plan9/plan9.ini. When a file is found, it reads at most 100 con­
figuration lines in the form name=value, storing them in memory at CONFADDR
(0x1200) in order for the loaded kernel to read.

The bootfile line in plan9.ini(8) may contain the kernel path; if no such line is found, a
prompt is presented for the user to type the desired path. The kernel must be either in
a.out(6) or ELF format and can be gzip compressed. 9load(8) reads the kernel�s text seg­
ment to virtual 0xF0100000 and the data segment to the first page-aligned address
after the text segment�s end. Everything in place, 9load(8) jumps to the kernel entry
point at virtual 0xF0100020.

The way 9load(8) works shows some limitations. Except for bootfile, the only way to set
boot configuration is by using plan9.ini(8). We recognize that having a permanent con­
figuration is a valuable feature, but forcing the user to edit a file everytime she wants to
experiment with boot parameters does not seem to be optimal. In addition, the boot­
strap program requires plan9.ini(8) and the kernel to be in a FAT partition.



A minimal device driver and filesystem infrastructure is needed for 9load(8) to do its
job. Since its source code is not the same as the other kernels, the exiting structure of
the later can not be enjoyed by the former. This leds to duplicated effort, where drivers
need be ported from kernels to 9load(8) if kernel supported hardware is to be used in
the boot process.

3.5. Stock Kernels

Plan 9 kernels assume to some degree that they are bootstrapped by 9load(8). In any
setup, at least 32-bit protected mode is expected to be turned on in the processor.

If draw(3) is going to be used, the kernel will rely on 9load(8) to have setup part of VGA
configuration; and if APM is needed, again the kernel will take it for granted from the
bootstrap program. Even that sd(3) needs to have an in-memory table of partitions it
does not parse disks for that information, expecting that 9load(8) has done the parsing
and stored the table in a CONFADDR line.

3.6. boot(8)

Besides being linked in the kernel image itself, boot(8) is mounted at /boot/boot and is
the first user program to run. It connects to the file server specified by the user (via
plan9.ini(8) or prompt) and mounts it as the namespace root. It then spawns a new pro­
cess and run init(8).

Boot(8) has limitations akin to 9load(8)’s. It does not fully enjoy the features provided
by the system. As an example, the namespace root, if local, must be kfs(4) or fossil(4); if
another filesystem is needed, routines particular to boot(8) must be written even if the
supporting programs already exists in Plan 9.

4. 9null

In order to address the mentioned limitations, we wrote a new PBS, modified boot(8) and
created a new kernel configuration. To the effort under which this work was done we
gave the name 9null.

Initially the effort was only to remove 9load(8) and boot a kernel directly. Russ Cox did
solve part of the problem by writing a minimal bootstrap program that would load a ker­
nel linked with itself [1]. His solution still left us a) the need for plan9.ini(8), b) the need
for the kernel and plan9.ini(8) to be on 9fat, and c) the need for the local root to be
either kfs(4) or fossil(4). We solved a) and c) with modifications to boot(8), and b) with a
new PBS.

4.1. pbs32.s

Our new PBS is pbs32.s. Its first task is to make the switch to 32-bit protected mode so
that it can address the whole address space. As a side-effect, the kernel size limit which
existed in the old PBS vanishes.

The sectors of the Plan9 slice on disk are layouted as follows:



Sector Description
0 Partition Boot Sector
1 Plan 9 partition table
2..k Space reserved for kernel (and possibly configuration)
k..n data

Pbs32.s parses the master partition table, if any, to find the first sector of the Plan 9
slice; if the table is empty, Plan 9 sector zero coincides with sector 0 of the disk. The
PBS then loops using ATA commands to read disk sectors and checking them for the
a.out(6) signature; if such a sector is found, the file is read to physical memory
0x00100000 with proper alignment guaranteed. At last, a jump is made to the kernel
entry point at 0x00100020 physical.

Such approach poses the need for the kernel to be contiguously placed on disk. On the
other hand, since it only knows about disk sectors, it is filesystem agnostic and the
space reserved for kernel storage does not even need to have a filesystem at all.

4.2. 9pcload

9pcload is the kernel created to be loaded directly by pbs32.s. It consists of minor addi­
tions to the pcf configuration so as to help the modifications made in boot(8). The big­
gest difference is that rc(1) was added to /boot.

4.3. Boot(8) modifications

Boot(8) was modified in three places. 9pcload, in cooperation with
/sys/src/9/boot/mkboot, sets a global variable pcload to 1 that allows boot(8) to know
if it is booted by pcload.

In the case 9pcload started boot(8), plan9.ini(8) is scanned, loaded, and the configura­
tion added to #ec for the next kernel to use; boot(8) asks for a kernel to be booted -
instead of the root file server - and use reboot(8) to reboot into it. If �!� is given as the
kernel, rc(1) is started and the boot process may be carried manually. For the other ker­
nels, boot(8) behaves as described in 3.6.

5. Open questions and work in progress

In order for 9null to fully replace the current boot process, there are some questions
that need to be addressed and work that need to be finished.

Pbs32.s uses ATA commands to read sectors from disk, so using it on floopies is not
supported. Since a great part of the machines comes with no floppy drive anymore, that
does not seem to be a real problem. In any case, the old PBS can still be used when
booting from floppy.

The new PBS does not support compressed kernels, though this only seems to be a
problem when booting from floppies. Since those are not supported, it can be regarded
as a non-issue.

Boot(8) is being rewritten to be minimal enough so as to let rc(1) carry the boot process.
This raises the possibility for boot(8) to enjoy the full range of Plan 9 services.



At last, we have not put the effort to solve the problem of PXE booting but understand
that, in order to preserve Plan 9 principles, methods of booting remotely must be sup­
ported. We believe that it is even paramount that the new boot process be as agnostic as
possible to the location of its kernel and root.

6. Conclusions

We have managed to write a new boot process for Plan 9 in which a kernel is directly
loaded by the early, sometimes called first stage, bootloader. Even not ready for produc­
tion use yet, it shows advantages over the old boot process, being at the same time sim­
pler and more general.

Our hope then is that this work will allow more users to boot Plan 9.

7. References

[1] R. Cox, 9fans archives, http://9fans.net/archive/2005/12/81, 2005

[2] Microsoft® Corporation, Microsoft Extensible Firmware Initiative FAT32 File System
Specification, http://www.microsoft.com/whdc/system/platform/
firmware/fatgen.mspx, Version 1.03, December 6, 2000

[3] Plan 9 Manuals, current edition published online at
http://plan9.bell−labs.com/sys/man

[4] Intel® Intel® 64 and IA−32 Architectures Software Developer�s Manual, Volume 3A:
System Programming Guide, Part 1 and Volume 3B: System Programming Guide, Part 2


