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ABSTRACT

Styx is a network protocol used in the Plan 9 and Inferno distributed
operating systems. This protocol provides a common language for com-
munication within the above-mentioned system. Styx is a simple client-
driven, message-oriented protocol. This protocol performs poorly on
high-latency links, independent of bandwidth, and has no provisions for
caching or server-initiated notifications. Previous attempts at hiding
latency have either required replacing Styx or accepting dramatically
weaker coherency guarantees.

This paper introduces Journal Callbacks (JC), a mechanism for
server-initiated notifications in client-driven protocols, such as Styx.
Journal Callbacks allows for these notifications without modification to
the underlying protocol.

We implemented a cache for Styx using Journal Callbacks. We
attempted to hide latency by caching server responses; notifications are
used for invalidation events. Notably, our cache and notification scheme
does not alter the Styx protocol; instead, it runs as a side protocol on top
of the existing stream. We present data from several benchmarks, show-
ing our cache reduces effective latency comparably to the Plan 9 cfs
cache.

1. Introduction

Styx [1] is a very simple resource abstraction protocol. It describes a set of named
hierarchical trees of named objects; leaf entries in the tree are named ‘‘files’’; other
entries are termed ‘‘directories’. All objects store a fixed set of metadata. Additionally,
files each provide an optionally seekable single stream of bytes. Some Styx servers sup-
port creating or removing subsets of their exported objects.

Styx allows more than one outstanding request through a client-controlled "tag".
Responses may be uniquely paired to their requesting message since the server will sim-
ply copy the tag back. There is a mechanism for request cancellation by tag, but this
facility is rarely used.

A Styx connection uses client-specified integers named "fids" to represent live han-
dles to objects. A fid, naming the root of the server’s hierarchy, is derived from an ini-
tial attach message. Fids may be walked to traverse the exported file tree, stat-ed or
wstat-ed to read or to write metadata, or Opened for subsequent Read and Write
requests. Create operations take a fid naming the parent directory as well as the name



of the object to be created. Once a fid, Open or not, has finished its purpose, it is
Clunked and its identifier is safely available for reuse.

Styx uniquely identifies every version of every object (typically "file") on a server by
an entity called a QID. QIDs expose some minimal "type" information, a "path" identifier
(essentially object identifier), and a "version" field. Typically, versions are incremented
whenever a mutation request (i.e. write, wstat, create, or remove) is successful.

Opened fids track the current version of any server-side object. That is, if there
are two fids, either from one or two clients, naming a given object, and one fid is used
for a Write, then a subsequent Read on either fid will reflect the changes made.

Prior work [2] has demonstrated that operations over Styx can be dominated by
latency of the link, which indicates that large performance gains may be had by reducing
the number of RPCs that cross the wire. There are a number of ways one might go
about this:

1. Redefining the protocol to need fewer RPCs,

2. Intercepting client RPCs and answering from cache before they may go over the
wire, or

3. Altering the behavior of clients to eliminate superfluous RPCs.

Previous work falls into the first and second categories. This work is also of the
second variety though we believe we are the first to investigate and find opportunities of
the third class.

2. Related Work

2.1. cfs(4)

cfs(4) is an on-disk cache intended for use by Plan 9 terminals. It copies data from
read messages into an on-disk cache. For subsequent read operations, if the data are
already present, cfs responds with cached data. Once per open, cfs will stat an object
on the server to check for validity of cached contents. cfs does not cache directory con-
tents nor, by extension, does it attempt to hide any latency for walk operations. Every
Walk, Stat, and Read on a directory is simply passed through to the server. Open mes-
sages become Stat followed by a open when the cached contents are shown to be stale.

cfs by design eliminates the ‘“‘tracking’’ feature of fids described above; that is,
opened fids passing through a cfs instance will continue to expose whatever data is in
cache, not what is present on the server. It is therefore possible, since cfs does not do
readahead or whole-file caching, to see a file’s stream in a state that corresponds to no
server version and have to re-open the file to resynchronize.

2.2. Octopus’s Op

Op [2] is a revision to the Styx protocol which batches together operations on the
wire to minimize the impact of latency. Ofs, the program which does Styx-to-Op inter-
mediation, may optionally act as a cache. When so doing, it assumes data is unaltered
for a brief period of time known as "coherency window" before it will act like cfs and
check the remote server for validity.

2.3. Network File System

NFS [3] is a protocol in the UNIX world superficially similar to Styx. At least one
modern NFSv3 client provides ‘“‘close-to-open’’ cache coherency, similar to that found
in cfs(4). When a client has a file open, it is assumed that the client’s cache matches the
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authoritative copy and that no other client is making changes. When the client closes
the file, all still dirty cache contents are written back to the server and the client’s kernel
issues a GETATTR. If on the next open call, the GETATTR request returns the same
value, the cache contents are assumed valid. Concurrent writes, even concurrent
appends, are not sensibly supported.

2.4. Andrew File System

The Andrew File System [4] also provides client-side caching. Clients are given
time-limited promises of notification should an opened file change. Clients may extend
these by actively reregistering their interest with the server. In Coda, an AFS descen-
dent, these callbacks are able to range in granularity from files to entire AFS volumes;
see5 . AFS assumes only one concurrent writer and generally writes back to the server
only when a file is closed or when the cache overflows; therefore, servers do not call for
writeback and there is no inter-client cache coherency.

2.5. Common Internet File System

Microsoft’s CIFS [6] supports caching using both "opportunistic" and explicit (byte
range) locking strategies. CIFS servers will notify clients of invalidations to open files;
we are unclear if this extends to opened, cached files that are not currently open. CIFS
allows caches to buffer writes and release them only on server notification of oppor-
tunistic lock breaks. Other clients are stalled while the server waits for the owning client
to write back. The lock taking operations and notifications are built in to the underlying
RPC protocol.

3. Design and Implementation

The next few sections describe the core ideas of JC cfs and then how JC cfs is put
together, first the cache controller, then the client-side cache.

3.1. The Design

As mentioned, Styx uses QIDs to uniquely identify every version of every object on
the server. The evolution of a Styx file server’s state could be described by an append-
only log of every QID modified (that is, whose version field changed) or removed. (Such
a journal need not include creation events; we may assume that the toplevel directory
simply exists by offset zero and all subsequent creation events will modify the contain-
ing directory.) Each client-side operation can be thought of as having some index into
this log; conversely, each offset corresponds to zero or more read operations and
exactly one write operaton. If a cache were to read this file and watch for appends, it
would know when, subject to network latency, to invalidate cached data and reread from
the server.

There are four agents in the Journal Callback design: the client, the server, the
client-side cache, and the (server-side) cache controller. The client, often the kernel’s
devmnt , and Styx server (e.g. fossil) remain unmodified. The cache and controller act
as Styx intermediators: that is, they have two Styx connections and respond to events
from each. The cache and cache controller communicate using their own Styx messages
over the wire. Additionally, the cache and cache controller are each free to initiate
requests of the server. To avoid changing the Styx hierarchy as viewed from the client,
we create a parallel hierarchy, using the aname feature. This design decision allows us
great flexibility going forward.



The cache controller encapsulates all inter-cache information management. It
serves to inform one cache when another has successfully carried out a mutation of
server state. The cache controller is assumed to sit between all caches and the server.
That is, while typically a server is permitted to handle clients directly, in the JC scheme
we assume that the server’s sole client is the cache controller.

Our cache controller filters the global QID journal to be specific to each connecting
cache (which are identified by UUIDs). Every QID reported to the cache is considered
cached. Further, it attempts to maintain knowledge of which server data have been seen
by the cache even after the cache disconnects; it is possible to indicate to the cache that
it has been gone too long and that it must assume that all cached data is out of date.

The cache mediates between a client and the cache controller. It will return cached
contents - file, stat, and directory data - quickly when present and believed to be up-
to-date. Caches are free to adopt a number of behaviors, including cfs-like behavior or
simply blocking client requests, when the journal indicates that they are not synchro-
nized with the server.

An example trace of a cache (1) implicitly registering interest in a file /foo and
another cache (2) causing the cached contents to become invalid can be seen below. At
point A, Cache 1 believes itself to be fully up to date and issues one more read against
the journal which blocks. By point B, the cache controller has registered Cache 1’s inter-
est - that is, the potential to have cached - the QID Q. The second cache’s Twstat oper-
ation at point C is forwarded to the server, and if the response is an Rwstat (rather than
a Rerror), the cache controller wakes Cache 1 by answering the blocked read (point D)
and will forward the success to Cache 2.

Cache 1 Cache Controller Cache 2

[A]
Tread tag=4 journal

Twalk /foo

Rwalk QID=Q
[B] Twalk fid=3 /foo

Rwalk QID=Q

[C] Twstat fid=3 ...

—

D] Rread tag=4 data=(

o

Rwstat

For performance and security reasons, one might wish to integrate the cache controller and server.
We have not done so largely for ease of implementation and to avoid tethering ourselves to a partic-
ular server.

We have not yet implemented a mechanism - such as an append-only write-only file located beside
the journals - for caches to notify the controller that a QID has been flushed. Such a mechanism
would reduce cache controller memory and unnecessary notifications.
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3.1.1. Asynchronous Notifications in Styx

We cannot claim that the core idea, of using a synthetic file to deliver events, is
new. From the outset, one of us used the documented behavior of usb(4) audio devices,

When all values from audioctl have been read, a zero-sized buffer is returned
(the usual end-of-file indication). A new read will then block until one of the
settings changes and then report its new value.

as precedent. We are unaware of any prior implementation of the scheme for caching,
however.

3.2. Implementation

As mentioned, both the cache and the controller act as Styx intermediators. Since
Styx offers only a single namespace for each of message tags and fids, both of these
programs maintain mapping tables so that they can safely rewrite incoming and outgo-
ing requests to avoid collision and, in the case of the controller, can map responses
back to the appropriate cache.

The cache and cache controller are implemented in the Limbo programming lan-
guage for the Inferno operating system; they total approximately 2400 lines of code.
The client-side cache is approximately 600 lines, the server approximately 900, and the
remaining 800 dedicated to plumbing - mapping structures for QIDs, Fids, and File
structures, and infrastructure (module loading, argument parsing).

3.2.1. The Cache Controller

The cache controller is a constructed from a set of concurrent processes synchro-
nizing through message passing. On receiving a connection from a client, the cache con-
troller starts a number of processes to handle the per-client state: remoteproc,
tmsgfd2chan, rmsgfd2chan, and sjournalproc.

Remoteproc exports a path in its namespace as the main filesystem to its client; to
do this, it constructs a pipe and spawns an asynchronous exportfs kernel process. It
then constructs two processes, rmsgfd2chan and tmsgfd2chan , to convert reads and
writes on the pipe and client file descriptors into Limbo channel messages.

The remoteproc accepts Styx T-messages from its client and R-messages from the
exportfs kernel process. It dispatches messages to the correct destination, based on a
message’s fid. Messages destined to the main file system are forwarded along the pipe
to the exportfs process; most messages destined to the cache control file system are
handled internally and receive a synchronous response. Read requests on journal files,
however, are handled by starting a process, handle_async_cc_read , which returns data
from the journal when it is available.

When a client cache first starts up and connects to a cache controller, it attaches to
the cache-control file system and attempts to open its journal file, identified by a UUID.
If its journal file does not exist, it attempts to create and then open it. In the cache con-
troller, creating a journal starts another process, sjournalproc, which mediates sending
and buffering invalidation messages from the cache controller to the client. Sjournalproc
listens on two per-journal Limbo channels; one receives cache invalidation events, the
other receives response channels from handle_async_cc_read Handle_async_cc_read
provides sjournalproc with a channel in response to a client cache read on its journal. If
the journal has any outstanding updates, it sends them along the new channel and
drops its references to both the events and the return channel. Otherwise, the reply
along the return channel is withheld until events are available. In this way, journals can
continue to enqueue events even when a client is not attached.



3.2.2. The Client

The client-side cache acts as a Styx server on its standard input/output, for its
client, and as a Styx client to the cache controller. The cache is constructed from a set of
concurrent processes, similar to the cache controller. These processes, tmsgfd2chan,
rmsgfd2chan, msg2wire, journalproc, and scfs, forward local Styx messages, return
responses, and generate journal messages. They also maintain the read and stat cache
data structures. Tmsgfd2chan and rmsgfd2chan are as in the cache controller - they
convert Styx messages to Limbo channel message. Msg2wire provides synchronization
for the connection to the cache controller, so that the main process scfs and the journal
process sjournalproc do not interfere.

Scfs is the cache main process. It receives Styx T-messages from a client, typically
Inferno’s devmnt, rewrites the FIDs, and forwards most of those messages to the remote
cache controller it is connected to. For TStat and TRead messages, it looks up the live
file structure by its FID; the per-FID structure points to a per-QID structure, which holds
a copy of the file’s directory entry and a reference to its read cache. So long as the direc-
tory entry and read cache are present, they are used to serve reads entirely locally.

Journalproc is the main journal process; on starting, it attaches to the cache con-
trol aname and attempts to open its journal via a UUID; if the journal is not present, it
creates it. Journalproc then enters a state machine, issuing Reads to the journal file and
waiting for replies. On receiving a reply, it extracts the encoded QID, looks up the per-
QID structure via a hash table, and invalidates both the directory entry and read cache
contents for that file, thus keeping the read cache current.

4. Results

As a test workload, as well as a mechanism for ensuring that our code worked, we
use our own build process as a benchmark. This involves running mk and the 1imbo
compiler, reading system headers and our source files, and generating our dis exe-
cutables. The total number and distribution of RPCs for the mk workload is provided in
the Execution Characteristics section. We hope it provides a typical, read-heavy work-
load.

Measurements were taken in a few environments:

1. a trans-Pacific link, from a client in Baltimore to a server in Tokyo, Japan. Typical
latency in this link was roughly 180 ms.

2. atrans-continental U.S. link, from a client in Baltimore to a server in San Francisco.
Typical latency here was roughly 90 ms.

3. with the client and server both on the same machine.

RPC traces were captured with mount-S and a tool to capture Styx protocol traces,
statlisten. For execution workloads, timing data, as reported by time, as shown
is the average of three runs.

All jccfs measurements were taken in Inferno 4e on a Linux 2.6 host. All measure-
ments of cfs were taken on a native Plan 9 CPU Server.

Results are not directly comparable between the Plan 9 and Inferno systems - the
Plan 9 system hardware was different than that of the Inferno systems and the Plan 9
client issues a different number and distribution of RPCs to our cache. RPC counts and
percent wall-clock time reduction are perhaps the most useful statistics.
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Total RPC counts, for un- and cold-cache behavior

Host Job Walk Clunk Stat Read Write Open Create+Rem TOTAL
Inferno

(uncached) mk all 151 83 7 99 49 62 14 465
(uncached) re-mk 5 3 0 6 0 3 0 17
(uncached) mk nuke | 28 5 0 12 0 5 14 64
(jecfs) mk all 151 83 7 139* 48 62 14 504
(jecfs) re-mk 5 3 0 3 0 3 0 14
(jecfs) mk nuke | 18 5 0 18** 0 5 14 60
Plan 9

(uncached) mk all 151 83 14 97 21 55 14 435
(uncached) re-mk 5 3 0 4 0 3 0 15
(uncached) mk nuke | 26 5 2 8 0 5 14 60
(cfs) mk all 151 83 14 43 21 55 14 381
(cfs) re-mk 5 3 0 4 0 3 0 15
(cfs) mk nuke | 26 5 2 8 0 5 14 60

*: 139 TReads were issued; 96 were asynchronous and to the cache aname; 43 were to
the main aname **: 18 TReads were issused; 7 were asynchronous and to the cache
aname; 11 were to the main aname

mk all times vs latency

Latency System Uncached Cold Hot

14 ms Inferno/jccfs | 7.8 s 7.5s5(3.8%) 6.8 5 (13%)
90 ms Inferno/jccfs | 49.5s 43.6 s (12%) 38.5s (22%)
180 ms Inferno/jccfs | 92.7 s 80.3s(13%) 73.1s(21%)
180 ms Plan 9/cfs(4) | 103.1 s 79.4 s (23%) 72.2 s (30%)

re-mk times vs latency

Latency System Uncached Cold Hot
90 ms Inferno/jccfs | 2.8 s - 1.8 s (36%)
180 ms Inferno/jccfs | 5.3 s 3.35(38%) 2.95s (45%)
180 ms Plan9/cfs(4) 3.9s 2.3s(@1%) 2.3s(41%)
mk nuke times vs latency
Latency System Uncached Cold Hot
180 ms Inferno/jccfs | 12.8 s 11.9s(7.0%) 6.6 s (48%)
180 ms Plan9/cfs(4) 11.4s 11.1s(2.6%) 6.1 s (46%)

We demonstrate a percentage wall clock time reduction roughly in line with cfs(4),
though we pay a little bit for our (unoptimized; see future work) journals.

5. Discussion and Conclusions

Our implementation of Journal Callbacks and cache for Styx exhibits similar perfor-
mance gains in absolute time to the Plan 9 cfs cache. Also looking at the timing mea-
surements in the previous section, as latency rises, both cfs and jccfs scale similarly -
their mechanism of operation is very different, however. Cfs reduces the total number of
read requests. JC Cfs, while increasing the number of RPCs, serves both Stat and Read
requests from its cache.
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Compared to cfs or an uncached client, jccfs increases the total number of TRead
requests. Why does jccfs exhibit any performance gain over an uncached client, then?
The answer is that reads to the cache control aname are not synchronous with RPCs to
the main aname. When we described Styx as ’performing poorly’ on high-latency links,
one the reasons is that Styx clients synchronously wait for RPC responses before send-
ing future messages, making poor use of a network’s Bandwidth-Delay Product. The
added cost of journal reads and responses make use of this available capacity to enable
server-initiated notifications.

An initial implementation of Journal Cachebacks for caching appears to be approxi-
mately as effective as the open-to-close coherency cache, cfs. We have shown that our
technique is viable and that even a minimal implementation offers real-world perfor-
mance gains while maintaining the Styx protocol.

6. Future Work

There are a number of avenues of further investigation which merit attention.
First, while we have shown that our scheme works, we have not yet shown at least one
of its conjectured major strengths. Second, our journal metadata could be exposed
and/or enhanced to great effect. Third, we have found, through testing and observa-
tion, a few opportunities to improve the behavior of Inferno’s Styx client. Fourth, we
feel we are in a good position to give well-motivated suggestions for a hypothetical
next-generation Styx.

6.1. On-Disk Caching

As a proof of concept, our cache does quite well; however, it is unable to demon-
strate a serious advantage of the JC scheme over that of cfs(4): a cache which has been
offline may quickly catch up. We expect an on-disk, terminal-side jccfs cache to dra-
matically reduce the number of RPCs generated at startup relative to cfs(4). Our cache
controller already ensures that journals are maintained and populated even after the
cache has hung up or closed its journal; the on-disk cache simply would have taken
more time than we had.

6.2. Exposing Notifications to Programs

The journal callback mechanism and controller, if present on a given mount, could
be made to provide a file or file system monitoring API, similar to Linux’s inotify[7]
Unlike inotify, however, a JC-based APl would work over networks (NFSv3 and prior
do not seem to be sufficiently capable; NFSv4 is) and could be presented as just another
kernel virtual server with ctl file, requiring no additional syscalls.

6.3. Exposing More Information to Caches

The current data stream in the journal file contains only QIDs. This is tragically lit-
tle information, allowing a cache the sole action of invalidation of cached contents, even
if it was the reason for the mutation. Every Twrite in fact invalidates the entire file’s
content as well as the containing directory. This is hardly ideal, so we would like to
report "re-QID operations" to caches emitting mutation operations. Similarly, we could
report "small" changes to directories (version increment and other stat changes, inser-
tions, deletions) and possibly even files.

It will be easy to accomidate these features by extending our (fortunately not yet stan-
dardized and documented) on-the-wire protocol to embed additional data records after
12



each QID in the journal. We note that as long as these data are well framed (by using,
e.g., a TLV format), the protocol is extensible without having to update all caches and
controllers in lockstep: a cache encountering a metadata field it does not understand
may simply revert to invalidating all data corresponding to the QID, as if there were no
ancillary fields.

6.4. Changes to devmnt or Additional Latency Reductions
We have observed Inferno’s devmnt to generate unnecessary RPCs, such as

; pwd ccd .
Tmsg.Walk(1,45,26,nil) Tmsg.Walk(1,46,45,nil)
Rmsg.Walk(1,array[] of {}) Rmsg.Walk(1,array[] of {})

Tmsg.Open(1,26,0)

Rmsg.Open(1,Qid(16r8,73,16r80),8192)

Tmsg.Clunk(1,26) Tmsg.Clunk(1,46)
Rmsg.Clunk(1) Rmsg.Clunk(T)

For the pwd case, a single Tstat request would have sufficed. In the cd. case, no mes-
sages should have been sent at all. Whether these traces are due to bugs or deliberate
simplification of the logic in devmnt is unclear. We note, however, that for correctness
we can not avoid sending Topen messages over the wire, and so the impact of an inter-
mediator may be lower than the impact of an optimal rewrite of devmnt .

We do not currently, but are in a good position to, synthesize Rwalk messages to entries
in cache and only instantiate them on demand. Walks that merely clone may be thought
of as always in cache. This would eliminate both RPCs in the cd case. For ordinary file
objects, we could also merge open requests to keep only one such fid open over the
wire.

Further, Tclunk messages may Rerror but the result is not meaningful if so: the fid is no
longer valid and the semantics of close() are that it cannot fail when given a real, open
fd. Since the kernel knows the openness state of an fd, there is no need for the kernel
to wait a full RTT when it emits a Tclunk. We have shown remarkable improvements in
performance (as might be expected from the RPC count table, above) by merely generat-
ing Rclunk messages in the cache.

6.5. Recommendations for a Next—edition Styx

Based on the implementation effort and measurements done above, we have some
small recommendations to make the protocol more amenable to intermediation:

6.5.1. Standardize Identification of Synthetic Files

Currently, Styx does not have a standard mechanism for discriminating between
synthetic and real files. By real files, we mean Styx objects which are expected to read
back what was written and, in the case of single open or successful exclusive open,
report the same contents for each read through start to finish. On the other hand,
things like control files, named pipes, and network connections, are "synthetic" - that is,
we are not surprised, and do not assume another concurrent user, when Tread at a fixed

Directories do not permit seeking and are generally considered "real". For non-QTDIR objects, we
may further require that all reads at the same offset, again with only one active user, return the
same contents.
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offset returns different data or an error.

This lack of differentiation means that currently care must be taken as to what portions
of the namespace (equivalently, what servers) are subject to (caching) intermediation.
For example, cfs intermediating an imported /net would almost surely render the /net
so imported inoperable.

A previous proposal, to add a bit to the type field of the QID to indicate the synthetic-
ness (or realness) of an object was previously put forward [8] and met with some resis-
tance. There is an undocumented convention that synthetic files have a QID version of
zero. We propose that this be a requirement of correct servers. With objects so labeled,
our cache and controller will be able to correctly know when to simply pass requests
through to the server.

6.5.2. Standardize or Report Mutation Effects on QIDs

Currently, in response to a mutation, our cache controller must walk a fid to the
server’s file and re-collect the stat information, despite already knowing the mutated
object(s) state. In particular, this walk is necessary to recover the version field, which is
entirely under server control. We therefore suggest that a next-generation Styx stan-
dardize on the already traditional behavior of merely incrementing the version on every
mutation event. Should this standardized behavior be seen as unacceptable, we sugge-
set instead that all mutating Styx RPCs be adjusted to return the QID of objects mutated
- Rcreate must contain two QIDs, all others just one.

We note in passing that there has been some discussion of making version fields propa-
gate to root. If this behavior were ever adopted, our cache and cache controller could
certainly be made to work with it, but since it is not likely to be standardized we pro-
pose that servers doing anything atypical with the version field be forced to declare so
in their Rversion messages, so that (our) intermediators may either adopt the propaga-
tion of updates to root behavior or fall back to more pessimistic but safe behaviors.
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ABSTRACT

How can non-trivial graphical user interfaces be designed in Plan 9 with-
out them losing their minimalistic style? Different toolkits are discussed,
and a proposal for a tabbed toolbar is suggested as a way to add func-
tionality without cluttering the interface and avoiding the use of pop-up
dialog boxes. A hypothetical port of the GUI in LyX is used as an example.

1. Introduction

The user interface of Plan 9 sometimes confuses newcomers from other systems, as
they are used to grouping user interfaces into being either text-based or graphical, and
Plan 9 is neither or both. It is graphical from the ground up and the mouse needs to be
used all the time, despite the fact that most programs are text based command line
tools and that the system is configured by editing configuration files.

The next discovery is that the graphical programs look quite different from their
cousins on other popular GUIs on X11 or Windows. They are very minimalistic and do
without well-known graphical components such as dialog boxes and buttons with icons.
One reason for this might be an aspiration for a very clean interface where traditional
GUI widgets do not fit in. Another reason could be that all the graphical applications
written so far, being comparatively simple, have not needed much help from menus and
buttons in their interfaces.

This paper tries to shed light on the design of graphical interfaces for Plan 9 appli-
cations focusing on interactive components such as menus, toolbars and dialog boxes.
How does one design an application GUI in Plan 9 that has many functions but still
blends well with the minimalistic look of the system? Existing Plan 9 applications has
been examined in order to rough out a “look-and-feel” style guide in comparison with
traditional WIMP (Windows, Icon, Mouse, Pointer) systems.

Toolkit libraries are the spine of graphical applications, largely defining their
behaviour. The graphics libraries libdraw, libpanel, libframe and libcontrol are presented
and discussed in the context of what graphical components they provide a GUI program-
mer.

To exemplify, a hypothetical port of the GUI for the word processor LyX is dis-
cussed, and a proposal for a tabbed toolbar is suggested in order to keep the interface
clean and to avoid pop-up windows.

Some conclusions are drawn from this work, but the main purpose of the paper is
to inspire discussions on how to design GUIs for applications with somewhat more com-
plex GUI needs, without losing the minimalistic style of Plan 9.



2. GUI philosophy

This is an attempt to outline a style guide for graphical programs in Plan 9 by observing
the current pool of applications in the distribution and also to some extent in the
contrib directory. The first observation is:

Keep the graphical interface as minimalistic as possible, with as few
functions as possible.

This embodies the principle of “The fewer the functions, the easier to use” [1]. If some
functionality is supplied by another program, do not include it in a new program too.
This rule “one tool for each task” or rule of modularity [2] is easier to achieve on the
command line than in a graphical interface, but the plumbing mechanism [3] in Plan 9
might be a way to let the user access functionality of other tools, such as Postscript
previewer, without including extra code for previewing in the application.

There is no need to make everything configurable. Users will accept a well chosen
default, and it makes programs less complex [1].

Maximise the usage of the space in the working window for actual
content.

The windowing system has no title bars, and most applications have no menus or tool-
bars that are visible all the time, but use context menus activated by button 2 and 3 on
the mouse.

A graphical program should stay within the borders of the window it was
started in.

As a graphical program “takes over” the screen area of the window from which it was
executed, the user does not get surprised by windows popping up on the screen, and
resizing is fully controlled by the user [1]. As an exception to this rule some programs,
mostly games, automatically change the size of the window to a size that fits the appli-
cation. The changed size persists when the user quits the game.

Popping up secondary windows (such as dialog boxes) is common in GUIs of other sys-
tems, but almost unseen among plan 9 applications. Instead some programs like
acme(1) split the window into multiple frames, using tiling [4, p. 348].

Some programs use scroll-bars if the content of a window (or a frame) doesn’t fit,
whereas some applications simply show as much as fits, eventually forcing the user to
resize the window to be able to access the hidden parts.

Icons (small stylistic pictures) are usually not used on buttons or
toolbars, instead ordinary text is used.

Graphical images are not evil, but text occupies less space, and is often easier to under-
stand [5, p. 168]. An example is the editable toolbar in acme where shortcuts to
commands can be added just by typing.

3. Toolkits

Libraries of GUlI components are often called toolkits and are constructed to ease
application development, so that the programmer does not have to write lots of low-
level graphics code in realising a GUI. Toolkits influence the look-and-feel of an
application, so programs will probably look better together, if they were developed
using the same toolkit.

All programs that use the graphical subsystem of Plan 9 will use libdraw, the basic
graphics library described in draw(2). Libdraw does not provide much help with
widgets, but together with event(2) it is easy to make “mouse button popup-menus”, the
most commonly used interaction component of graphical applications in Plan 9.
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3.1. libpanel

The panel library was developed by Tom Duff in order to write the Mothra web browser
[6]. Panel offers traditional GUI components like pull down menus, input boxes, radio
buttons, etc. and has a 3D-look-and-feelt, found in most GUIs today.

Although the look and feel of panel is minimalistic compared to many other 3D
toolkits, it does not blend so well with the style of other plan 9 applications. Libpanel is
not included in the standard distribution (4th edition) of Plan 9.

3.2. libcontrol

The control(2) library developed by Rob Pike and Sape Mullender provides a set of
interactive controls (widgets) using the thread library, thread(2). Each control has its
own thread, and it is possible to send it messages and to receive events from it.
Libcontrol is, to my understanding, the preferred toolkit for new applications with
complex graphical user interfaces.

3.3. libframe

Another library frame(2) provides “frames of editable text in a single font” and is used
by applications like acme and rio(1).

3.4. Toolkit features and use

Table 1 shows the GUI features provided by each of the above described toolkits and
also an estimate of how frequently the libraries are used by applications in /sys/src.

Table 1: Toolkit summary.

Component draw frame panel control
Button X X
Context menu X X X
Pulldown menu X
Slider X X
Text panel X X X
Number of apps in /sys/src 43 5 - 3

4. Case study - LyX

To practically investigate GUI design options for Plan 9, a port of the graphical interface
of LyX, the LaTeX frontend, will be discussed.

“LyX is a document processor that encourages an approach to writing based
on the structure of your documents (WYSIWYM) and not simply their
appearance (WYSIWYG).” [http://www.lyx.org]

LyX was chosen because it has a featureful GUI that simplifies the editing task compared
to using a markup language and a standard text editor. It is also a good example of a
GUI frontend for a text based application.

When porting an application, it is easier to break with the style of the target sys-
tem, than in a fresh design that are built bottom-up. Considerations should be made to
follow the style of the target system, or if needed, carefully extend the style in order to
embrace new types of applications.

1 3D in the sense that shadowed borders give the impression of a raised or depressed button.
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4.1. GUI description

To get a grip of the functionality that has to be ported, we start with an overview over
the current graphical interface of LyX. Figure 1 shows a screenshot of LyX running
under Linux, with a document loaded into the editing buffer. The interface consists
top-down of:

Pull down menu-bar (File, Edit, View, Insert, ...)

Icon toolbar with buttons for commonly used functions

Writing area
Status bar

The writing area lets the user edit text in different fonts, but also handles insets such as
figures, tables and equations. The writing area will not be further discussed in this
paper. The toolbar with buttons also features a pull-down menu for selecting paragraph
types in the document (standard, section, subsection, quotation, ...).

o LyX: [doc/Tutorial.lyx] (read only) —0Ox

File Edit View Insert Mavigate Document Tools Help
Titie S S TS & s
H A SR E R
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= & 2 @ »
Exercise: Put the various equations in E
example raw.lyx into display mode,
and see how they're typeset differently.
Exercise: Using various tools you've
learned in this section, you should be able

to write an equation like foot :

logy x =10
Jr(_g;:] = 0 =10 LN

et \'——_'— =

@

Figure 1: Screenshot of LyX running under Linux.

4.2. User interaction

Some of the pull down menus in LyX open dialog boxes (or pop-up windows) with fur-
ther options. Figure 2 shows the box for controlling the layout of paragraphs. Settings
for the document as whole (meta-data) is configured in a dialog box with a tree graph
with sections for each types of configuration.

Most of the pop-up windows in LyX are “stay on top” but modelesst, enabling the
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user with a large screen to keep the windows open while editing the document. Other
menu items and menu buttons take direct action in the document, some by inserting a
formula box in the document, that is then further filled out by the user.

Line spacing: |Default *| | |

-

Alignment

@ Use Paragrapn's Default Alignment {Justified)

Justified Left Center Right

| Indent Paragraph

= Labal Width

Longestiabel |

Restora oK Apply Close |

Figure 2: Paragraph settings in LyX.

4.3. Choice of toolkit

There are many possible routes to take in translating a GUI to the Plan 9 environment.
One obvious way would be to create an interface as identical as possible to its original
form, but the risk is then high that it will feel ill-fitted in its new environment.

For a translation function-by-function, the Panel library would probably be a first
choice, as it has the widest support for traditional GUI concepts like pull-down menus
and other 3D widgets, see table 1. But as mentioned above, using the Control library
would make the application fit better with the overall style of Plan 9, and the discussion
that follows assumes a port based on libcontrol.

4.4. Menus

The graphical interface in LyX is full of menus and buttons, whereas the typical plan 9
program is not, so how does one proceed? Some functionality can be fulfilled by other
tools, and can therefore be left out; this includes Postscript and PDF-export, dialog
boxes for opening and saving files as well as printing.

Menu items that cannot easily be omitted, without compromising the usefulness of
LyX compared to hand editing the LaTeX code, include setting headings as well as inser-
tion of figures and tables.

Context menus (activated by pressing mouse button 2 or 3) could be used for
some functionality, but putting too many menu items, or even sub-level items, in them
should be discouraged [1]. Many users of Plan 9 have also become used to the mouse

1 Modeless as opposed to modal pop-up windows that locks the main window until the user has
closed the dialog box [4, p.355]. Modeless windows that are open all the time are often called tool
boxes.
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chording mechanism in acme and would probably wish for similar functionality in other
applications for heavy text editing, reserving the mouse buttons for that purpose.

4.5. The toolbar

A toolbar can be seen as a portion of the graphical interface reserved for commands and
buttons, in contrast to the main working area, in our case the writing area in LyX. The
text editor sam(1) has a window for entering written commands and many frame based
applications such as acme and the web browser abaco(1) have toolbars with text
buttons.

The toolbar is accessed using the mouse, which would be in line with Plan 9 style,
as the system is quite mouse intensive compared to other graphical systems, especially
as keyboard shortcuts are not used much. One drawback with the toolbar is that it easily
gets messy if it is filled with different buttons and options, another negative aspect is
that it wastes available screen space. A proposed toolbar solution for a port of the LyX
GUI will be discussed later.

4.6. Dialog boxes

Dialog boxes are quite common in traditional graphical interfaces found on Unix, Win-
dows or Mac OS, and they are used mostly when the application needs to ask the user
something more in detail, like where to save a file and in what format. Another use for
dialog boxes is for setting preferences, especially in systems where text-based configu-
ration files are avoided at all cost. Dialog boxes have the advantage, compared to tool-
bars, of not occupying screen area when they are not activated.

As dialog boxes are uncommon in graphical programs designed for Plan 9 it might
be desirable to do without them in a port of the LyX GUI. One way could be to sub-
frame the working window whenever a dialogue has to be made with the user, the frame
is again removed as soon as the user is finished with it. The good thing about this solu-
tion is that the application stays within its allocated window area, but the main drawback
is that the editing window has to shrink its size temporarily, which may seem even more
annoying to the user than the opening of secondary pop-up windows. Another sugges-
tion is to reserve a fixed sub-frame for dialogue purposes, avoiding pop-ups and
shrinking frames.

4.7. Dynamic dialog toolbar

If space is to be withheld for a toolbar or for user dialogues, the use of it ought to be as
efficient as possible. One idea is to use a menu-tabbed toolbar much like the Ribbon in
Microsoft Office 2007 [7]. A crude mock-up of how it could look is shown in figure 3.

The idea with the tabbed toolbar is that the user first selects one of the tabs, say
paragraph settings which causes the toolbar to be filled with controls associated with
paragraphs. Reaching a function now requires an extra click on the tab, but only if the
user wasn’t already editing the paragraph settings for some other paragraph in the
document.

5. Conclusions

An outspoken goal of Plan 9 is to keep the GUI simple and clean. This can be accom-
plished by reducing functionality or dividing the tasks into multiple programs, thereby
eliminating the need for more complex Ul structures such as dialog boxes and button
toolbars. When this cannot be done without losing too much of the usefulness of having
a GUI for the application, new directions have to be found.

For GUIs with lots of functionality, as in the word processor LyX, a dynamic dialog
toolbar is proposed as an efficient use of screen space in an attempt to reduce the need
for annoying pop-up windows.
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Figure 3: Mock-up of LyX with a tabbed toolbar.
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Abstract

We have ported the Plan 9 research operating system to the IBM Blue
Gene/L and /P series machines. In contrast to 20 years of tradition in
High Performance Computing (HPC), we require that programs access
network interfaces via the kernel, rather than the more traditional (for
HPC) OS bypass.

In this paper we discuss our research in modifying Plan 9 to support
sub-microsecond ”bits to the wire” (BTW) performance. Rather than
taking the traditional approach of radical optimization of the operating
system at every level, we apply a mathematical technique known as Cur-
rying, or pre-evaluation of functions with constant parameters; and add a
new capability to Plan 9, namely, process-private system calls. Currying
provides a technique for creating new functions in the kernel; process-
private system calls allow us to link those new functions to individual
processes.

1 Introduction

We have ported the Plan 9 research operating system to the IBM Blue Gene/L
and /P series machines. Our research goals in this work are aimed at rethinking
how HPC systems software is structured. One of our goals is to re-examine and,
if possible, remove the use of OS bypass in HPC systems.

OS bypass is a software technique in which the application, not the operating
sytem kernel, controls the network interface. The kernel driver is disabled, or, in
some cases, removed; the functions of the driver are replaced by an application
or library. All HPC systems in the ”"Top 50”, and in fact most HPC systems
in the Top 500, use OS bypass. As the name implies, the OS is completely

. ﬂ'! Sandia National Laboratories

fSandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energys National Nuclear Security Adminis-
tration under contract DEAC0494AL85000. SAND- 2009-5156C.
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bypassed; packets move only at the direction of the application. This mode of
operation is a lot like the very earliest days of computers, where not a bit of I/O
moved unless the application directly tickled a bit of hardware. It involves the
application (or libraries) in the lowest possible level of hardware manipulation,
and even requires application libraries to replicate much of the operating systems
capabilities in networking, but the gains are seen as worth the cost.

One of the questions we wish to answer: is OS bypass still needed, or might
it be an anachronism driven by outdated ideas about the cost of using the
kernel for I/O7 The answer depends on measurement. There is not much doubt
about the kernel’s ability to move data at the maximum rate the network will
support; most of the questions have concerned the amount of time it takes to
get a message from the application to the network hardware. So-called short
message performance is crucial to many applications.

HPC network software performance is frequently characterized in terms of
"bits to the wire” (BTW) and ”ping-pong latency”. Bits to The Wire is a
measure of how long it takes, from the time an application initiates network
I/0, for the bits to appear on the physical wire. Ping-pong latency is time it
take a program to send a very small packet (ideally, one bit) from one node to
another, and get a response (usually also a bit). These numbers are important
as they greatly impact the performance of collectives (such as a global sum),
and collectives in turn can dominate application performance [2] [4] In an ideal
world, ping-pong latency is four times the "bits to the wire” number. Some
vendors claim to have hit the magical 1 microsecond ping-pong number, but a
more typical number is 2-3 microseconds, with a measured BTW number of 700
nanoseconds. However, these numbers always require dedicated hosts, devices
controlled by the application directly, no other network activity, and very tight
polling loops. The HPC systems are turned into dedicated network benchmark
devices.

A problem with OS bypass is that the HPC network becomes a single-user
device. Because one application owns the network, that network becomes un-
usable to any other program. This exclusivity requires, in turn, that all HPC
systems be provisioned with several networks, increasing cost and decreasing re-
liability. While the reduction in reliability it not obvious, one must consider that
the two networks are not redundant; they are both needed for the application
to run. A failure in either network aborts the application.

By providing the network to programs as a kernel device, rather than a
set of raw registers, we are making HPC usable to more than just specialized
programs. For instance, the global barrier on the Blue Gene systems is normally
only available to programs that link in the (huge) Deep Computing Messaging
Facility (DCMF) library or the MPI libraries!, which in turn link in the DCMF.
Any program which wishes to use the HPC network must be written as an MPI
application. This requirement leads to some real problems: what if we want
the shell to use the HPC network? Shells are not MPI applications; it makes

LMPI libraries are typically much larger than the Plan 9 kernel; indeed, the configure script
for OpenMPI is larger than the Plan 9 kernel
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no sense whatsoever to turn the shell into an MPI application, as it has uses
outside of MPI, such as starting MPI applications!

On Plan 9 we make the global barrier available as a kernel device, with
a simple read/write interface, so it is even accessible to shell scripts. For ex-
ample, to synchronize all our boot-time scripts, we can simply put echo 1 >
/dev/gibObarrier in the script. The network hardware becomes accessible to
any program that can open a file, not just specialized HPC programs.

Making network resources available as kernel-based files makes them more
accessible to all programs. Seperating the implementation from the usage re-
duces the chance that simple application bugs will lock up the network. Inter-
rupts, errors, resources conflicts, and sharing can be managed by the kernel.
That is why it is there in the first place. The only reason to use OS bypass is
the presumed cost of asking the kernel to perform network 1/0.

One might think that the Plan 9 drivers, in order to equal the performance
of OS bypass, need to impose a very low overhead — in fact, no overhead at
all: how can a code path that goes through the kernel possibly equal an inlined
write to a register? The problem with this thinking, we have come to realize, is
the fact that complexity is conserved. It is true that the OS has been removed.
But the need for thread safety and safe access to shared resources can not be
removed: the support has to go somewhere. That somewhere is the runtime
library, in user mode.

Hence, while it is true that OS bypass has zero overhead in theory, it can
have very high overhead in fact. Programs that use OS bypass always use a
library; the library is usually threaded, with a full complement of locks (and
lockiing bugs and race conditions); OS functions are now in a library. In the
end, we have merely to offer lower overhead than the library.

There are security problems with OS bypass as well. To make OS bypass
work, the kernel must provide interfaces that to some extent break the security
model. On Blue Gene/P, for example, DMA engines are made available to
programs that allow them to overwrite arbitrary parts of memory. On Linux
HPC clusters, Infiniband and other I/O devices are mapped in with mmap, and
users can activate DMAs that can overwrite parts of kernel memory. Indeed,
in spite of the IOMMUs which are supposed to protect memory from badly
behaved user programs, there have been recent BIOS bugs that allowed users
of virtual network interfaces to roam freely over memory above the 4 gigabyte
boundary. Mmap and direct network access are really a means to an end; the
end is low latency bits to the wire, not direct user access. It is so long since the
community has addressed the real issue that means have become confused with
ends.

2 Related work

The most common way to provide low latency device I/O to programs is to
let the programs take over the device. This technique is most commonly used
on graphics devices. Graphics devices are inherently single-user devices, with
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multiplexing provided by programs such as the X server. Network interfaces,
by contrast, are usually designed with multiple users in mind. Direct access
requires that the network be dedicated to one program. Multi-program access
is simply impossible with standard networks.

Trying to achieve high performance while preserving multiuser access to a
device has been achieved in only a few ways. In the HPC world, the most
common is to virtualize the network device, such that a single network device
appears to be 16 or 32 or more network devices. The device requires either
a complex hardware design or a microprocessor running a real-time operating
system, as in Infiniband interfaces: thus, the complex, microprocessor-based
interfaces do bypass the main OS, but don’t bypass the on-card OS. These
devices are usually used in the context of virtual machines. Device virtualization
requires hardware changes at every level of the system, including the addition
of a so-called iommu [1].

An older idea is to dynamically generate code as it is needed. For example,
the code to read a certain file can be generated on the fly, bypassing the layers
of software stack. The most known implementaiton of this idea is found in
Synthesis [3]. While the approach is intriguing, it has not proven to be practical,
and the system itself was not widely used.

The remaining way to achieve higher performance is by rigorous optimization
of the kernel. Programmers create hints to the compiler, in every source file,
about the expected behaviour of a branch; locks are removed; the compiler
flags are endlessly tweaked. In the end, this work results in slightly higher
throughput, but the latency — ”bits to the wire” — time changes little if at all.
It is still too slow. Recent experiences shows that very high levels of optimization
can introduce security holes, as was seen when a version of GCC optimized out
all pointer comparisons to NULL.

Surprisingly, there appears to have been little other work in the area. The
mainline users of operating systems do not care; they consider 1 millisecond
BTW to be fine. Those who do care use OS bypass. Hence the current lack of
innovation in the field: the problems are considered to be solved.

The status quo is unacceptable for a number of reasons. Virtualized device
hardware increases costs at every level in the I/O path. Device virtualization
adds a great deal of complexity, which results in bugs and security holes that are
not easily found. The libraries which use these devices have taken on many of
the attributes of an operating system, with threading, cache- and page-aligned
resource allocation, and failure and interrupt management. Multiple applica-
tions using multiple virtual network interfaces end up doing the same work, with
the same libraries, resulting in increased memory cost, higher power consump-
tion, and a general waste of resources all around. In the end, the applications
can not do as good a job as the kernel, as they are not running in priveleged
mode. Applications and libraries do not have access to virtual to physical page
mappings, for example, and as a result they can not optimize memory layout
as the kernel code.
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3 Our Approach

Our approach is a modification of the Synthesis approach. We do create curried
functions with optimized I/O paths, but we do not generate code on the fly;
curried functions are written ahead of time and compiled with the kernel, and
only for some drivers, not all. The decision on whether to provide curried
functions is determined by the driver writer.

At run time, if access to the curried function is requested by a program, the
kernel pre-evaluates and pre-validates arguments and sets up the parameters for
the driver-provided curried function. The curried function is made available to
the user program as a private system call, i.e. the process structure for that
one program is extended to hold the new system call number and parameters
for the system call. Thus, instead of actually synthesizing code at runtime,
we augment the process structure so as to connect individual user processes to
curried functions which are already written.

We have achieved sub-microsecond system call performance with these two
changes. The impact of the changes on the kernel code is quite minor.

We will first digress into the nature of Curry functions, describe our changes
to the kernel and, finally discuss the performance improvements we have seen.

3.1 Currying

The technique we are using is well known in mathematical circles, and is called
currying. We will illustrate it by an example.

Given a function of two variables, f (z,y) = y/x, one may create a new
function, g (z), if y is known, such that g (z) = f(x,y). For example, if y is
known to be 2, the function g might be g (x) = f (x,2).

We are interested in applying this idea to two key system calls: read and
write. Each takes a file descriptor, a pointer, a length, and an offset. In the
case of the Plan 9 kernel, we had used a kernel trace device and observed the
behavior of programs. Most programs:

e Used less than 32 distinct pages when passing data to system calls
e Opened a few files and used them for the life of the program
e Did very small I/O operations

We also learned that the bulk of the time for basic device I/O with very
small write sizes — the type of operation common to collective operations — was
taken up in two functions: the one that validated an open file descriptor, and
the one that validated an I/O address.

The application of currying was obvious: given a program which is calling
a kernel function read or write function: f(fd,address,size), with the same
file descriptor and same address, we ought to be able to make a new function:
g (size) = f(fd,address, size), or even g () = f (fd,address, size).

Tracing indicated that we could greatly reduce the overhead. Even on an 800

Mhz. Power PC, we could potentially get to 700 nanoseconds. This compares
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very favorably with the 125 ns it takes the hardware to actually perform the
global barrier.

3.2 Connecting curry support to user processes

The integration of curried code into the kernel is a problem. Dynamic code
generation looks more like a security hole than a solution.
Instead, we extended the kernel in a few key ways:

e extend the process structure to contain a private system call array, used
for fastpath system calls

e extend the system call code to use the private system call array when it
is passed an out-of-range system call number

e extend the driver to accept a fastpath command, with parameters, and to
create the curried system call

e extend the driver to provide the curried function. The function takes no
arguments, and uses pre-validated arguments from the private system call
entry structure

4 Implementation of private system calls on Plan 9
BG/P

To test the potential speeds of using private system calls, a system was imple-
mented to allow fast writes to the barrier network, specifically for global OR
operations, which are provided through /dev/gibOintr. The barrier network is
particularly attractive due to its extreme simplicity: the write for a global OR
requires that we write to a Device Control Register, a single instruction, which
in turn controls a wire connected to the CPU. Thus, it was easy to implement
an optimized path to the write on a per-process basis.

The modifications described here were made to a branch of the Plan 9 BG/P
kernel. This kernel differed from the one being used by other Plan 9 BG/P
developers only in that its portable incref and decref functions had been
redefined to be architecture-specific, a simple change to allow faster performance
through processor-specific customizations. In other words, we are comparing our
curried function support to an already-optimized kernel.

First, the data structure for holding fast system call data was defined in
the /sys/src/9k/port/portdat.h file (from this point on, kernel files will be
assumed to reside under /sys/src/9k/, thus port/portdat.h).

In the same file, the proc struct was modified to include the following dec-
larations:

/* Array of private system calls */
Fastcall *fc;
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/* Our special fast system call struct */
struct Fastcall {

/* The system call number */

int scnum;

/* A communications endpoint */

Chan *c;

/* The handler function */

long (*fun) (Chan*, void*, long);

void *buf;

long n;

Figure 1: Fast system call struct

int cfd, gdf, scnum=256;

char areall], cmd[256];

gfd = open("/dev/gib", ORDWR);

cfd = open("/dev/gibOctl", OWRITE);

cmd = smprint("fastwrite %d %d Ox%p %d", scnum, fd, area, sizeof(area));

write(cfd, cmd, strlen(cmd));
close(cfd);
docall(scnum) ;

Figure 2: Sample code to set up a fastpath systemcall

/* # private system calls */
int fcount;

Programs are required to provide a system call number, a file descriptor,
pointer, and length. It may seem odd that the program must provide a system
call number. However, we did not see an obvious way to return the system
call number if the system chose it. We also realized that it is more consistent
with the rest of the system to have the client choose an identifier. That is how
9P works: clients choose the file identifier when a file is accessed. Note that,
because the Plan 9 system call interface has only two functions which can do
I/0, the Fastcall structure we defined above covers all possible 1/O operations.
The contrast with modern Unix systems is dramatic.

Next, we modified the Blue Gene barrier device, bgp/devgib.c, to accept
fastwrite as a command when written to /dev/gibOctl. When the command
is written, the kernel allocates a new Fastcall in the fc array, using a user-
provided system call number and a channel pointing to the barrier network,
then sets (*fun) to point to the gibfastwrite function and finally increments
fcount. The code to set up the fast path is shown in Figure 2.

Following the write, scnum contains a number for a private system call to
write to the barrier network. From there, a simple assembly function (here
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TEXT docall(SB), 1, $0
SYSCALL
RETURN

Figure 3: User-defined system call code for Power PC

called docall) may be used to perform the actual private system call. The code
is shown in Figure 3.

When a system call interrupt is generated, the kernel typically checks if the
system call number matches one of the standard calls; if there is a match, it
calls the appropriate handler, otherwise it gives an error. However, the kernel
now also checks the user process’s fc array and calls the given (*fun) function
call if a matching private call exists. In the case of the barrier device, it calls
gibfastwrite, which writes '1” to the Device Control Register. The fastcall
avoids several layers of generic code and argument checking, allowing for a far
faster write.

5 Results

In order to test the private system call, we wrote a short C program to request a
fast write for the barrier. It performs the fastpath setup as shown above. Then,
it calls it calls the private system call. The private system call is executed many
times and timed to find an average cost per call. As a baseline, the traditional
write call was also tested using a similar procedure.

We achived our goal of sub-microsecond bits to the wire. With the traditional
write path, it took approximately 3,000 cycles per write. Since the BG/P uses
850 MHz PowerPC processors, this means a normal write takes approximately
3.529 microseconds. However, when using the private system calls, it only takes
around 620 cycles to do a write, or 0.729 microseconds. The overall speedup
is 4.83. The result is a potential ping-pong performance of slightly under 3
microseconds, which is competitive wth the best OS bypass performance.

6 Conclusions and Future Work

Runtime systems for supercomputers have been stuck in a box for 20 years. The
penalty for using the operating system was so high that programmers developed
OS bypass software to get around the OS. The result was the creation of OS
software above the operating system boundary. Operating systems have been
recreated as user libraries. Frequently, the performance of OS bypass is cited
without taking into account the high overhead of these user-level operating
systems.

This paper shows an alternative to the false choice of slow operating systems
paths or fast user-level operating systems paths. It is possible to use a general-
30



purpose operating system for I/O and still achieve high performance.

We have managed the write side of the fastcall path. What remains is to im-
prove the read side. The read side may include an interrupt, which complicates
the issue a bit. We are going to need to provide a similar reduction in overhead
for interrupts.

We have started to look at curried pipes. Initial performance is not very
good, because the overhead of the Plan 9 kernel queues is so high. It is probably
time to re-examine the structure of that code in the kernel, and provide a faster
path for short blocks of data.

Our goal, in the end, is to show that IPC from a program to a user level file
server can be competitive with in-kernel file servers. Achieving this goal would
help improve the performance of file servers on Plan 9.
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ABSTRACT

Within the last year, the transition to the nupas [1] mail system has been
completed at Coraid. In that time, the number of messages stored and
the size of inboxes has increased by an order of magnitude. Yet the
amount of storage required on the WORM has been reduced by an order
of magnitude and the amount of core required has been reduced by an
order and a half. Most of these gains have been realized through the
caching strategies made possible by the mdir(6) format. Much smaller
but significant optimizations and bug fixes in the last year have enabled
the current level of performance.

Introduction

The introduction of nupas has been largely successful. Most heavy users access the sys-
tem through IMAP. The system is accessed daily through Apple Mail, Firefox, Opera and
Outlook. Last year at this time, both mail servers ran out of memory on a daily basis.
With many very large inboxes, nearly 1GB of data per day was added to the WORM.
Opening large mailboxes was understandably accompanied by a delay on the order of
minutes. Today, though 14 new users have been added, less than 5% of available mem-
ory is used by upas, and the elimination one of the two mail servers is being considered.
Only TOOMB of data per day is added to the WORM. Logging now accounts for more of
the dump than email. The largest mailboxes can now be opened in a few seconds. This
is summarized in Figure 1.

total total largest box largest box dump core
date messages MB messages MB blocks MB
200808 12491 1143 975 249 123000 5386
200908 157075 8307 15587 790 14500 482
Figure 1

While this improvement would not have been possible without the move to caching facil-
itated by moving to the mdir format, some surprising secondary limitations were found
and some bugs were found due to faulty assumptions.



Hash Handling

The initial roll out of nupas was somewhat disappointing. The memory savings was less
than expected. Several users were using a few hundred megabytes of core each. Part of
this was explained by email clients such as Apple Mail keeping several connections open
at once and the increase in IMAP-capable mobile devices. Even so, it was typical for
users with large inboxes to have 50MB instances of upas/fs immediately upon opening
the inbox. Leak(1) was unable to complete a scan of these processes. It was deter-
mined that linearly increasing the allocation for two large memory blocks in an inter-
leaved fashion with other small allocations was causing pathological memory fragmenta-
tion. Switching to exponential allocation fixed leak, but revealed that there was no
memory leak.

In addition, opening large mailboxes was taking an inordinate amount of cpu. Profiling
indicated that the file hash table handling accounted for the bulk of startup time. Since
the scheme for handling files was to keep them in a hash table. Each file needed a hash
entry. Since each message part has 30 standard files for the message body, header,
subject and so on, a message with n subparts will require 30n+1 hash entries. Each
one of these entries is allocated with malloc(2). A 5000 message mailbox would have a
minimum of 150000 hash entries, but likely at least double that number. Since there
were 1227 buckets, the load factor o on the hash table, or the average number of
entries per hash chain, would be at least 122 [2], [3].

Given that the load factor is so large for such a small mailbox, and since it seems that
building the hash table is expensive, it may be worth analyzing how long we expect
building this table to take. Interestingly this topic does not appear to be explicitly dis-
cussed in [3]. If we consider adding a single element to a hash table, it’s not hard to see
that computing the bucket by hashing a predetermined set of strings with a fixed value
is bounded by a constant time. Since we do need to guard against duplicates, adding an
element to the hash chain, will take O(1+o/2) time [4]. Since

o (1+a)?
IR

t=0—-o
we can expect that loading the hash table will take O(o.?) time.

There are two potential solutions to this problem. Either replace the current lookup with
one of sub-linear time and/or reduce the number of hash entries. The latter seemed
like the best first approach as this could also address excessive memory use. And,
given the poor big-O performance of our algorithm, any reduction of nodes will result in
quadratic speedups.

The hash entries for the 30 standard files that populate each message directory were
replaced with a single dummy entry entry “xxx.” The file portion of the QID was stripped
out. Since all message directories are numeric and all of the standard files begin with a
letter, we simply lookup the dummy entry when asked to lookup file starting with a let-
ter. If the dummy entry is found, the given name is translated to a file id by linear
search of a static table. The file id is added back to the returned QID. This change
reduces the number of allocated hash entries from 30n+1 to n+1. Likewise the new
load factor o’ = o/30 and the time to build the hash table will be
O(a’?/4) = 0O((0./30)?) = O(e?/900). While this approach fails to address the qua-
dratic behavior, it does address the memory use and provides three orders’ of magni-
tude headroom.
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It is important to note in this analysis that IMAP clients such as Apple Mail open each
mail box every minute or so to check for new messages. If there are none the mail box
is immediately closed. Thus the time it takes to open a mailbox is one of the most
important benchmarks in our system. Also, due to the frequent mailbox scanning with-
out closing the IMAP connection, reducing memory fragmentation is vitally important.
Based on the experience with leak, a few small items (e.g. mime types) that were sure
to be reused were freed when mail boxes are closed. This reduced the total long term
memory use for upas/fs driven by Apple Mail by an order of magnitude.

Last year’s upas/fs was benchmarked against this year’s for a 15200-message mailbox.
One further significant change has been made: the number of hash buckets has been
increased to 1999. Both the time and memory usage to start and to run nedmail(1) are
listed. The results are summarized in Figure 2.

start start ned ned
date time (s) core (MB) time(s) core (MB)

200808 72 67 233 133
200908 0.40 17 3.3 17
Figure 2

While memory use is still somewhat disappointing, start time has improved by two
orders of magnitude. Since memory use is predicted to be linearly related to the num-
ber of messages, it is envisioned that this issue will not need to be revisited until
30000-message mailboxes become commonplace, when it is expected that the O(a.?) of
hash addition will again begin to be important.

Index Scanning

The scanning of the mailbox index relied on the order of messages in a mailbox being
stable. A missing or extra message near the beginning of the list of messages (assumed
to be in date-of-delivery order) could result in a large number of messages being
deleted from the index and the mailbox. Initially it was assumed that this case was not
important, since non-stable sorting would indicate a bug in the particular mail box
code. Unfortunately a few bugs were found that deleted mail. It also proved a difficult
problem to tackle for mdir mailboxes since they are sorted by date from the UNIX from
line, since the order of delivery to the mdir is not available. Directory order is not stable
when deletions are possible, since deletions on the file server simply mark a slot free
and new files fill the first free directory slot. Yet new messages that are older than
some (or even all) existing mail may be added.

The solution employed was to keep an AVL tree keyed on the SHA1 checksum of each
message. This allowed to matching of existing message structures to index entries to
be robust in the face of ordering problems or races between the index and mailbox.
The AVL tree was also employed to detect duplicate messages. Duplicate messages and
other rejected messages are now silently dropped rather than deleted.

Avoiding Mail Box Scans

For very large mailboxes, scanning the mailbox can be fairly resource intensive. Since
mailboxes tend to be open many times, it is desirable to avoid duplicating this effort.
To accomplish this, each mail box type may save a line of mailbox-specific information
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to the index. If the mail box is older than the index, then the index is read without con-
sulting the underlying mailbox. For example mdir mailboxes save the QID of the mdir
directory to the index. If the QID matches the QID saved in the index, the index is con-
sidered “newer” than the mdir.

When the mail box scan is avoided, the difference for our 15200-message mailbox is
0.4s for the cached case versus 3.3s for the cached case.

Mdir Scanning; Upas/fs Scanning

The decision to sort mdir mailboxes by date continues to be problematic. Since new
messages must be given a higher message number than older message ids, it is possi-
ble for messages to be out of numeric order. This requires all upas/fs clients to be
aware that relative message ids may not be stable as they are with a tradition mbox for-
mat. It would be possible to declare the order of messages in the index to be the the
order of messages in a mailbox. However the same problem would arise if the index is
regenerated for any reason. This would seem to be an unwise dependency.

Sorting has been a particular problem for imap4d due to the quixotic definition of the
imap UID and sequence numbers. IMAP uses two different numbers to as handles on a
message. The UID is an almost permanent identifier assigned in increasing order.
Sequence numbers are only valid during a session and take on values from 1-n, where
n is the number of messages in the mail box. The difficult requirement is that if
uibD, < UID, then one must have seq, < seq,; This puts the sorting of IMAP (by UID)
in conflict with the sorting of upas/fs (by date). Rather than trying to maintain two con-
flicting sorted indexes, the same AVL tree solution used for index scanning was
employed. Other clients such as nedmail(1) simply read the entire message directory
and resort.

Further Work

Clearly there is a lot of room for further work. Much of the further work mentioned in
[1] remains undone. There is ongoing work to multithread the the file server interface
of upas/fs. It seems that replacing the current hashing strategy needs to be in the
medium-term plans. The AVL tree strategy seems fruitful and should be reused by mdir
and nedmail to avoid the need to read and sort the mail directory as a whole. Sorting of
mailboxes continues to be a sticky wicket. IMAP search and listing performance needs
some reevaluation.
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ABSTRACT

We describe a new way of booting Plan 9 in which no special bootstrap
program is involved; rather, the bootstraping is done by just another Plan
9 kernel. In this way, we can take advantage of the full range of devices,
networks, and file systems supported by the operating system.

1. Motivation

The Plan 9 4th Edition boot process has been the target of critics from the Plan 9 users
and its replacement has been discussed for years [1]. We tried to synthesize these dis-
cussions and ideas in the form of a rewrite of the relevant boot routines.

2. Introduction

Plan 9 boots on PCs with help from an auxiliary kernel called 9/oad(8). Such a kernel
does not pretend to be general on its purpose and does not share its source code tree
with the other Plan 9 kernels. This approach has shown limitations and in order to have
these limitations addressed, fundamental changes needed to be made; the current sta-
tus and future directions of the new Plan 9 boot process is hereafter discussed.

3. Plan 9 on PC

In order for this paper to be self-contained, this section presents the minimum required
information about Plan 9 running on computers of the x86 architecture.

3.1. Storage

We assume the storage medium to be some form of local disk. Such a disk can be
divided into slices/partitions, in which case it is said to be partitioned.

The slice reserved for Plan 9 (or the whole unpartitioned disk) is itself divided into Plan
9 partitions. A standard Plan 9 installation taking the whole disk and using fossil(4) as
the root file sytem layouts the disk as follows (Begin and End in sector units):

The code implementing the solution was initially written as part of the Google Summer of Code 2009
program.



Name Start End Description

9fat 63 — Plan 9 kernels and boot configuration
nvram -— — non-volatile ram for PCs
fossil — —  fossil(4)
swap - — swap area
3.2. Boot

After the Power On Self Test, the BIOS loads sector zero of the disk into physical mem-
ory address 0x7C00 and jumps to that location. If the disk is partitioned, that sector will
contain the Master Boot Record (MBR). The MBR searches the master partition table for
the active partition, loads that partition’s Partition Boot Sector (PBS) into O0x7C00, and
jumps there. If the disk is not partitioned, sector zero is the PBS itself.

3.3. PBS

The partition boot sector starts by jumping over its Boot Parameter Block (BPB) [2]. Its
BPB ID field is edited by format(8) to contain the starting sector of the root directory of
the FAT filesystem to where it is being installed. That directory is searched for a file
named '9LOAD ’. If the desired file is found, the PBS calls BIOS interrupt 13 [4] to
read the file’s contents to memory Ox1000 physical and far jumps there.

PBS is hardcoded as a FAT boot sector and only understands FAT filesystems. Then it
can only be used if a FAT is present at the beginning of the Plan 9 disk slice. Because of
the x86 segmentation used by the PBS and the BIOS interrupt, 9/oad(8) has a size limit
of approximately 1MB.

3.4. 9load(8)

9load(8) is the PC bootstrap program: an auxiliary kernel with its own source code tree.
Its main purpose is running a Plan 9 kernel. For this purpose to be met, 9/oad(8) needs
to a) enable 32-bit protected mode, b) load boot configuration, and c) find and load a
kernel.

Plan9.ini(8) is the boot configuration file for PCs. 9/load(8) probes storage media search-
ing for files plan9.ini and plan9/plan9.ini. When a file is found, it reads at most 100 con-
figuration lines in the form name=value, storing them in memory at CONFADDR
(0x1200) in order for the loaded kernel to read.

The bootfile line in plan9.ini(8) may contain the kernel path; if no such line is found, a
prompt is presented for the user to type the desired path. The kernel must be either in
a.out(6) or ELF format and can be gzip compressed. 9load(8) reads the kernel’s text seg-
ment to virtual OXxFO100000 and the data segment to the first page-aligned address
after the text segment’s end. Everything in place, 9load(8) jumps to the kernel entry
point at virtual OxFO100020.

The way 9load(8) works shows some limitations. Except for bootfile, the only way to set
boot configuration is by using plan9.ini(8). We recognize that having a permanent con-
figuration is a valuable feature, but forcing the user to edit a file everytime she wants to
experiment with boot parameters does not seem to be optimal. In addition, the boot-
strap program requires plan9.ini(8) and the kernel to be in a FAT partition.
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A minimal device driver and filesystem infrastructure is needed for 9/oad(8) to do its
job. Since its source code is not the same as the other kernels, the exiting structure of
the later can not be enjoyed by the former. This leds to duplicated effort, where drivers
need be ported from kernels to 9load(8) if kernel supported hardware is to be used in
the boot process.

3.5. Stock Kernels

Plan 9 kernels assume to some degree that they are bootstrapped by 9/oad(8). In any
setup, at least 32-bit protected mode is expected to be turned on in the processor.

If draw(3) is going to be used, the kernel will rely on 9load(8) to have setup part of VGA
configuration; and if APM is needed, again the kernel will take it for granted from the
bootstrap program. Even that sd(3) needs to have an in-memory table of partitions it
does not parse disks for that information, expecting that 9/oad(8) has done the parsing
and stored the table in a CONFADDR line.

3.6. boot(8)

Besides being linked in the kernel image itself, boot(8) is mounted at /boot/boot and is
the first user program to run. It connects to the file server specified by the user (via
plan9.ini(8) or prompt) and mounts it as the namespace root. It then spawns a new pro-
cess and run init(8).

Boot(8) has limitations akin to 9load(8)’s. It does not fully enjoy the features provided
by the system. As an example, the namespace root, if local, must be kfs(4) or fossil(4), if
another filesystem is needed, routines particular to boot(8) must be written even if the
supporting programs already exists in Plan 9.

4. 9null

In order to address the mentioned limitations, we wrote a new PBS, modified boot(8) and
created a new kernel configuration. To the effort under which this work was done we
gave the name 9null.

Initially the effort was only to remove 9load(8) and boot a kernel directly. Russ Cox did
solve part of the problem by writing a minimal bootstrap program that would load a ker-
nel linked with itself [1]. His solution still left us a) the need for plan9.ini(8), b) the need
for the kernel and plan9.ini(8) to be on 9fat, and c) the need for the local root to be
either kfs(4) or fossil(4). We solved a) and c¢) with modifications to boot(8), and b) with a
new PBS.

4.1. pbs32.s

Our new PBS is pbs32.s. Its first task is to make the switch to 32-bit protected mode so
that it can address the whole address space. As a side-effect, the kernel size limit which
existed in the old PBS vanishes.

The sectors of the Plan9 slice on disk are layouted as follows:
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Sector Description

0 Partition Boot Sector

1 Plan 9 partition table

2..k Space reserved for kernel (and possibly configuration)
k..n data

Pbs32.s parses the master partition table, if any, to find the first sector of the Plan 9
slice; if the table is empty, Plan 9 sector zero coincides with sector 0 of the disk. The
PBS then loops using ATA commands to read disk sectors and checking them for the
a.out(6) signature; if such a sector is found, the file is read to physical memory
0x00100000 with proper alignment guaranteed. At last, a jump is made to the kernel
entry point at 0x00100020 physical.

Such approach poses the need for the kernel to be contiguously placed on disk. On the
other hand, since it only knows about disk sectors, it is filesystem agnostic and the
space reserved for kernel storage does not even need to have a filesystem at all.

4.2. 9pcload

9pcload is the kernel created to be loaded directly by pbs32.s. It consists of minor addi-
tions to the pcf configuration so as to help the modifications made in boot(8). The big-
gest difference is that rc(7) was added to /boot.

4.3. Boot(8) modifications

Boot(8) was modified in three places. 9pcload, in cooperation with
/sys/src/9/boot/mkboot, sets a global variable pcload to 1 that allows boot(8) to know
if it is booted by pcload.

In the case 9pcload started boot(8), plan9.ini(8) is scanned, loaded, and the configura-
tion added to #ec for the next kernel to use; boot(8) asks for a kernel to be booted -
instead of the root file server - and use reboot(8) to reboot into it. If ’I" is given as the
kernel, rc(1) is started and the boot process may be carried manually. For the other ker-
nels, boot(8) behaves as described in 3.6.

5. Open questions and work in progress

In order for 9null to fully replace the current boot process, there are some questions
that need to be addressed and work that need to be finished.

Pbs32.s uses ATA commands to read sectors from disk, so using it on floopies is not
supported. Since a great part of the machines comes with no floppy drive anymore, that
does not seem to be a real problem. In any case, the old PBS can still be used when
booting from floppy.

The new PBS does not support compressed kernels, though this only seems to be a
problem when booting from floppies. Since those are not supported, it can be regarded
as a non-issue.

Boot(8) is being rewritten to be minimal enough so as to let rc(1) carry the boot process.
This raises the possibility for boot(8) to enjoy the full range of Plan 9 services.
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At last, we have not put the effort to solve the problem of PXE booting but understand
that, in order to preserve Plan 9 principles, methods of booting remotely must be sup-
ported. We believe that it is even paramount that the new boot process be as agnostic as
possible to the location of its kernel and root.

6. Conclusions

We have managed to write a new boot process for Plan 9 in which a kernel is directly
loaded by the early, sometimes called first stage, bootloader. Even not ready for produc-
tion use yet, it shows advantages over the old boot process, being at the same time sim-
pler and more general.

Our hope then is that this work will allow more users to boot Plan 9.
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ABSTRACT

The Plan 9 sd(3) interface provides uniform access for disk-like devices
for Plan 9. Its interfaces have proven fairly robust. With no incompatible
changes, features like full 48-bit (ATA) and 64-bit (SCSI),
SGPIO[1]/SES-2[2] enclosure management lights, and centralized SCSI
CDB to ATA translation have been straightforward to add. Nonetheless,
sd assumes fixed rather than hot-swappable drives and uses a intricate
drive lettering scheme that may require some client-visible changes in
the future.

Introduction

Although sd(3) stands for storage device, the name belies its SCSI roots. Nonetheless, it
has proved quite robust in the face of changing requirements and easily extensible. The
addition of several new hot-pluggable SATA and combined mode SATA/SAS controllers
has stretched the model a bit. New drives and controllers already can break the 32-bit
LBA barrier. Certainly this will be common in the future. Revisions to the ATA standard
have introduced tricky new power-saving modes. We will outline the changes that were
necessary to support these new drivers, the changes to the drivers themselves and what
needs to be addressed in the future.

Raw ATA Support

While Plan 9 allows user-level commands to send raw SCSI commands directly to devices
through the raw file, there is no such facility for ATA. Drives using the ATA command
set get by by emulating a small set of SCSI commands. As outlined in the ATA au
Naturel[3] paper, support for raw ATA commands was added without disturbing existing
SCSI functionality. This required an extra ataio function and added about 20 lines of
code to the generic device.

Full LBA Support

Full LBA support has been limited at several points to 32 bits. This limits drive size to
2TB with 512-byte sectors. With drive sizes currently at 2TB and chipset-level RAID that
can combine drives, this is becoming a serious limitation. While sdaoe(3) sidesteps
many of these issues, the other drivers have not been addressed.

These 32-bit limitations are in part due to the translation to SCSI in pc/sdscsi.c.
The current ATA drivers all translate 10 requests into SCSI CDBs and then translate them
from SCSI to the original LBA and number of sectors. So SCSI limitations also limit ATA.
Finally, ATA drivers are unable to translate READ/WRITE (16), required for LBAs



larger than 32 bits, back into LBA format.

The initial step, generating the 16-byte IO commands when necessary was taken several
years ago. However, drivers using scsionline were still limited to 32-bits due to the
use of GET CAPACITY (10). It was straightforward to detect overflow and issue a
16-byte command. As we consider the drivers, the translation from CDB to LBA in the
various ATA drivers (sdaoe excepted) do not translate READ/WRITE (16). Rather
than fix them all individually, a new function sdfakescsirw was added which converts a
CDB back into an LBA, number of sectors and if it is a read or write request. This fixed
the 32-bit limitation and removed a number of duplicate (and not entirely compatible)
copies of the same code.

For many drivers, it does not make sense to translate from LBA to CDB and back again.
The sdiahci driver was modified to take advantage of this. A new ahcibio function was
written that uses the LBA and sector count directly. In the case of ATAPI devices only, a
SCSI CDB is generated using scsibio. For sdaoe the new aoebio is even simplier. Since
the AoE driver does not support ATAPI, a CDB is never generated.

Unfortunately, a rio function must still be provided to support basic scuzz(8) functional-
ity. This limits the amount of code that can be eliminated.

Lights

SES-2 and SGPIO are standards defining how to interact with a drive enclosure. Features
vary widely by enclosure and HBA. It is possible to control up to three lights per drive (a
green activity light, an amber locate light and a red fail light). In addition, a number of
sensor readings may be available.

Rather than add add-hoc functionality to sd, it was decided to pass SGPIO/SES-2 com-
mands through via control files. It would have been possible to simply reuse the
sdXX/ctl file, but this would have made detecting and parsing the status of the lights
cumbersome. Instead, a facility to add extra control files to a device was added. A sin-
gle function was added to register a new control file.

For SGPIO/SES-2 lights, a 1ed control file was added. Reading this file returns the cur-
rent slot state. This is one of normal, rebuild, locate, spare, or fail. Writing a new state
to the 1ed file sets that slot to the given state. For example

chula# cat led

normal
chula# echo fail>led

sets the red fail light on red and turns on the backplane alarm. To reset the alarm,

chula# echo normal>led
chula# cat led
normal

It is envisioned that this functionality could be harnessed by fs(3) or smart(8) to auto-
maticly announce the state of drives.

Since SGPIO/SES-2 also support temperature and fan sensors, additional control files
could be added to support them.
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Autosense

There are two ways for SCSI commands to return data. The method used depends on
the HBA and the SCSI transport protocol. Early SCSI standards required the REQUEST
SENSE to return sense (error) information. Autosense returns the sense data along
with the response in a transport-dependent manner. When autosense is used, unso-
licited REQUEST SENSE commands will return no sense, as sense data is returned
only once. SAM-3[4] makes autosense mandatory. However the protocol provided by
the raw file is not autosensing; it requires an explicit REQUEST SENSE. To get
around this, sd uses the flag SDnosense to instruct the driver to act as if autosense
had been disabled. Since this forces an additional burden on most modern drivers, the
technique used by sdmylex of saving sense data until a REQUEST SENSE command is
issued was moved to sd. Conversion to the new system remains unfinished as no work-
ing machines capable of driving available and supported cards were available for test-
ing. The old sense-data saving code will simply be unused.

Bits
A few odds and ends were also changed. According to the sd manual page, the 10th

unit attached to controller 0 should be named sdOa. Unfortunately, it was named
sd010. In this case, the manual was considered authoritative and the code was “fixed.”

It had also been impossible for anyone other than eve to read the sdctl file. Since the
list of of controllers is not a security concern, the ability for eve to grant looser permis-
sions was added in line with other sd-generated files. In addition, the error messages
were sharpened so that setting unsettable information with wstat is flagged as an error.

There was also a vendor-specific MODE SENSE response which could be used to return
the IDENTIFY (PACKET) DEVICE data. It appeared that this wormhole was
unused, except by scuzz(8). It was removed since this data is accessible more conven-
tionally via atazz(8).

The sdctl file is now generated so that there is exactly one line per drive letter. For-
merly, a line was generated only if the driver provided an appropriate rtopctl function.
Sd now supplies a basic entry for drivers lacking this function. This simplifies unit enu-
meration by spelling out each controller prefix. For each prefix, only 16 units need to
be probed.

Drivers

The following drivers have received significant work, or are new: sdaoe, sdata, sdiahci,
sdloop, sdorion, sdmv50xx. The sdloop (loopback) and sdorion drivers are new. All
were converted to use 1ibfis. Print statements were audited so drivers properly iden-
tify themselves in console messages.

The Sdata driver now uses the standard sdsense, sdfakescsi and sdfakescsirw functions.
Additionally, a bug that caused Intel ICH south bridges to hang the system on boot was
fixed.

The AHCI driver was updated to revision 1.3 of the specification[5] and power manage-
ment support was added. Support for sector sizes other than 512 bytes was added.
Disabled ports, staggered spinup, device discovery ATAPI devices have all been fixed.
PATA bridged drives such as SATA Disk on Modules (DOMs) are now supported. Several
AMD SB6xx bugs were fixed and support for VIA, nVidia, and JMicron devices was
added.
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Further Work

While all of the changes to sd could use further polish, there are two areas that have
been ignored: hot-pluggable devices and drive enumeration. Hot-pluggable devices are
a rough fit in sd because they may appear at any time and disappear at any time. The
parallel SCSI drivers only create units where a drive is detected at boot time. The IDE
driver takes the same approach. Since it is assumed that drives are not hot-pluggable,
this makes sense. (As long as the IDE driver is actually presenting PATA drives, that is.)
For SATA and SAS, this approach doesn’t work. Either device directories must be cre-
ated dynamicly, or a directory for each port must be created on boot. The later
approach was taken, though this may need revisiting in the face of SAS expanders and
SATA port multipliers, which may have tens of thousands of ports.

Another consequence of hot-pluggable drives is that it’s hard to know how long to wait
at boot for drives to appear. In a large system with many drives, it’s not uncommon for
drives to straggle in several minutes after the operating system gains control. Clearly it
would be unacceptable to wait two minutes for each drive. But if that drive contains
your root filesystem, you need to wait. The current kludge is for 9/oad to use a heuristic
algorithm to spin up the drives it sees. This seems to be working well in practice, but
does not appear to be a satisfactory solution.

The verify and online model for bringing a unit online seem at odds with hot-plug
devices. An experimental version of sd was built that combined the initial pnp, enable
and verify functions into pnp. This allows drive discovery to take place in parallel and
reduces the amount of state the controller needs to carry. The online function was
replaced with ready. This function returns 1 if the drive is ready for access. The pro-
cess of bringing the drive online is done asynchronously by a background process. As
this is already a requirement for hot-pluggable drives, this requires no addition code.
While this approach has worked well and simplified the code, it still doesn’t answer the
guestion of when to wait for the drive to be ready and for how long.

Currently sd picks meaningful drive letters. On a pc, sdCO and sdDO are, as expected,
the primary IDE master and the secondary IDE master. However, if these same drives
are not given the IDE legacy 10 ports, they would be labeled sdEO and sdF0. Other
ATA drives start with drive letter ‘E.” SCSI drives start with the first controller being
named sd0. The new Orion driver can control either SATA or SAS drives. The only solu-
tion in the current scheme is to start with a new primary letter — ‘a’ was chosen. My
primary development machine has drive letters a, C—F, and |. This is a somewhat
unwieldy situation. It may make sense to enumerate units sequentially. So instead of
having units sda0 and sdEO one would have sd00 and sdO01. If itis worth preserving
the ability to associate drive letters with controllers, sdctl can continue to provide the
mapping for interested applications. Dynamicly configured drives could read their
assigned letters back.
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ABSTRACT

The Plan 9 sd(3) interface allows raw commands to be sent. Traditionally,
only SCSI CDBs could be sent in this manner. For devices that respond to
ATA/ATAPI commands, a small set of SCSI CDBs have been translated
into an ATA equivalent. This approach works very well. However, there
are ATA commands such as SMART which do not have direct translations.
| describe how ATA/ATAPI commands were supported without disturbing
existing functionality.

Introduction

In writing new sd(3) drivers for plan 9, it has been necessary to copy laundry list of spe-
cial commands that were needed with previous drivers. The set of commands supported
by each device driver varies, and they are typically executed by writing a magic string
into the driver’s ctl file. This requires code duplicated for each driver, and covers few
commands. Coverage depends on the driver. It is not possible for the control interface
to return output, making some commands impossible to implement. While a work
around has been to change the contents of the control file, this solution is extremely
unwieldy even for simple commands such as IDENTIFY DEVICE.

Considerations

Currently, all sd devices respond to a small subset of SCSI commands through the raw
interface and the normal read/write interface uses SCSI command blocks. SCSI devices,
of course, respond natively while ATA devices emulate these commands with the help
sd. This means that scuzz(8) can get surprisingly far with ATA devices, and ATAPI (sic.)
devices work quite well. Although a new implementation might not use this approach,
replacing the interface did not appear cost effective and would lead to maximum incom-
patibilities, while this interface is experimental. This means that the raw interface will
need a method of signaling an ATA command rather than a SCSI CDB.

An unattractive wart of the ATA command set is there are seven protocols and two com-
mand sizes. While each command has a specific size (either 28-bit LBA or 48-bit LLBA)
and is associated with a particular protocol (PIO, DMA, PACKET, etc.), this information is
available only by table lookup. While this information may not always be necessary for
simple SATA-based controllers, for the IDE controllers, it is required. PIO commands
are required and use a different set of registers than DMA commands. Queued DMA
commands and ATAPI commands are submitted differently still. Finally, the data direc-
tion is implied by the command. Having these three extra pieces of information in addi-
tion to the command seems necessary.



A final bit of extra-command information that may be useful is a timeout. While
alarm(2) timeouts work with many drivers, it would be an added convenience to be able
to specify a timeout along with the command. This seems a good idea in principle,
since some ATA commands should return within milli- or microseconds, others may
take hours to complete. On the other hand, the existing SCSI interface does not support
it and changing its kernel-to-user space format would be quite invasive. Timeouts were
left for a later date.

Protocol and Data Format

The existing protocol for SCSI commands suits ATA as well. We simply write the com-
mand block to the raw device. Then we either write or read the data. Finally the status
block is read. What remains is choosing a data format for ATA commands.

The T10 Committee has defined a SCSI-to-ATA translation scheme called SAT[4]. This
provides a standard set of translations between common SCSI commands and ATA com-
mands. It specifies the ATA protocol and some other sideband information. It is partic-
ularly useful for common commands such as READ (12) or READ CAPAC-
ITY (12). Unfortunately, our purpose is to address the uncommon commands. For
those, special commands ATA PASSTHROUGH (12) and (16) exist. Unfortunately
several commands we are interested in, such as those that set transfer modes are not
allowed by the standard. This is not a major obstacle. We could simply ignore the stan-
dard. But this goes against the general reasons for using an established standard: inter-
operability. Finally, it should be mentioned that SAT format adds yet another intermedi-
ate format of variable size which would require translation to a usable format for all the
existing Plan 9 drivers. If we’re not hewing to a standard, we should build or choose for
convenience.

ATA-8 and ACS-2 also specify an abstract register layout. The size of the command
block varies based on the “size” (either 28- or 48-bits) of the command and only con-
text differentiates a command from a response. The SATA specification defines host-
to-drive communications. The formats of transactions are called Frame Information
Structures (FISes). Typically drivers fill out the command FISes directly and have direct
access to the Device-to-Host Register (D2H) FISes that return the resulting ATA register
settings. The command FISes are also called Host-to-Device (H2D) Register FiSes.
Using this structure has several advantages. It is directly usable by many of the existing
SATA drivers. All SATA commands are the same size and are tagged as commands.
Normal responses are also all of the same size and are tagged as responses. Unfortu-
nately, the ATA protocol is not specified. Nevertheless, SATA FISes seem to handle most
of our needs and are quite convenient; they can be used directly by two of the three cur-
rent SATA drivers.

Implementation

Raw ATA commands are formatted as a ATA escape byte, an encoded ATA protocol
proto and the FIS. Typically this would be a H2D FIS, but this is not a requirement.
The escape byte 0xff, which is not and, according to the current specification, will never
be a valid SCSI command, was chosen. The protocol encoding proto and other FIS
construction details are specified in /sys/include/fis.h. The proto encodes
the ATA protocol, the command “size” and data direction. The “atazz” command format
is pictured in Figure 1.
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Oxff proto 0x27 flags
cmd feat Iba0 Iba8
Ibal6 dev Iba24 Iba32
Iba40 feat8 cnt cnt8
rsvd ctl

Oxff proto 0x34 port
stat err Iba0l Iba8
Ibal6 dev Iba24 Iba32
Iba40 feat8 cnt cnt8
rsvd ctl
Figure 1

Raw ATA replies are formatted as a one-byte sd status code followed by the reply FIS.
The usual read/write register substitutions are applied; ioport replaces flags, status
replaces cmd, error replaces feature.

Important commands such as SMART RETURN STATUS return no data. In this case,
the protocol is run as usual. The client performs a 0-byte read to fulfill data transfer
step. The status is in the D2H FIS returned as the status. The vendor ATA command
Oxf0 is used to return the device signature FIS as there is no universal in-band way to
do this without side effects. When talking only to ATA drives, it is possible to first issue
a IDENTIFY PACKET DEVICE and then a IDENTIFY DEVICE command, inferring
the device type from the successful command. However, it would not be possible to
enumerate the devices behind a port multiplier using this technique.

Kernel changes and Libfis

Very few changes were made to devsd to accommodate ATA commands. the SDreq
structure adds proto and ataproto fields. To avoid disturbing existing SCSI func-
tionality and to allow drivers which support SCSI and ATA commands in parallel, an addi-
tional ataio callback was added to SDifc with the same signature as the existing
rio callback. About twenty lines of code were added to port/devsd. c to recognize
raw ATA commands and call the driver’s ataio function.

To assist in generating the FISes to communicate with devices, 1ibfis was written. It
contains functions to identify and enumerate the important features of a drive, to format
H2D FISes And finally, functions for sd and sd —-devices to build D2H FISes to capture the
device signature.

All ATA device drivers for the 386 architecture have been modified to accept raw ATA
commands. Due to consolidation of FIS handling, the AHCI driver lost 175 lines of code,
additional non-atazz-related functionality notwithstanding. The IDE driver remained
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exactly the same size. Quite a bit more code could be removed if the driver were reor-
ganized. The mv50xx driver gained 153 lines of code. Development versions of the
Marvell Orion driver lost over 500 lines while 1ibfis is only about the same line
count.

Since FIS formats were used to convey commands from user space, 1ibfis has been
equally useful for user space applications. This is because the atazz interface can be
thought of as an idealized HBA. Conversely, the hardware driver does not need to know
anything about the command it is issuing beyond the ATA protocol.

Atazz

As an example and debugging tool, the atazz(8) command was written. Atazz is an ana-
log to scuzz(8); they can be thought of as a driver for a virtual interface provided by sd
combined with a disk console. ATA commands are spelled out verbosely as in ACS-2.
Arbitrary ATA commands may be submitted, but the controller or driver may not support
all of them. Here is a sample transcript:

az> probe

/dev/sdal 976773168; 512 50000f001b206489
/dev/sdC1 0; O 0

/dev/sdDO 1023120; 512 0

/dev/sdEO 976773168; 512 50014ee2014f5b5a
/dev/sdF7 976773168; 512 5000cca2l4c3a6d3
az> open /dev/sdFO0

az> smart enable operations

az> smart return status

normal

az> rfis

00

34405000004fc2a00000000000000000

In the example, the probe command is a special command that uses #S/sdctl to
enumerate the controllers in the system. For each controller, the sd vendor command
O0xf0 (GET SIGNATURE) is issued. If this command is successful, the number of sec-
tors, sector size and WWN are gathered and and listed. The /dev/sdC1 device reports
0 sectors and 0 sector size because it is a DVD-RW with no media. The open command
is another special command that issues the same commands a SATA driver would issue
to gather the information about the drive. The final two commands enable SMART and
return the SMART status. The smart status is returned in a D2H FIS. This result is
parsed the result is printed as either “normal,” or “threshold exceeded” (the drive pre-
dicts imminent failure).

As a further real-world example, a drive from my file server failed after a power outage.
The simple diagnostic SMART RETURN STATUS returned an uninformative “threshold
exceeded.” We can run some more in-depth tests. In this case we will need to make up
for the fact that atazz does not know every option to every command. We will set the
1baoO register by hand:
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az> smart 1lba0 1 execute off-line immediate # short data collection
az> smart read data

col status: 00 never started

exe status: 89 failed: shipping damage, 90% left

time left: 10507s

shrt poll: 176m

ext poll: 19m

az>

Here we see that the drive claims that it was damaged in shipping and the damage
occurred in the first 10% of the drive. Since we know the drive had been working before
the power outage, and the original symptom was excessive UREs (Unrecoverable Read
Errors) followed by write failures, and finally a threshold exceeded condition, it is rea-
sonable to assume that the head may have crashed.

Stand Alone Applications

There are several obvious stand-alone applications for this functionality: a drive
firmware upgrade utility, a drive scrubber that bypasses the drive cache and a SMART
monitor.

Since SCSI also supports a basic SMART-like interface through the SEND DIAGNOSTIC
and RECEIVE DIAGNOSTIC RESULTS commands, disk/smart(8) gives a chance to
test both raw ATA and SCSI commands in the same application.

Disk/smart uses the usual techniques for gathering a list of devices or uses the devices
given. Then it issues a raw ATA request for the device signature. If that fails, it is
assumed that the drive is SCSI, and a raw SCSI request is issued. In both cases,
disk/smart is able to reliably determine if SMART is supported and can be enabled.

If successful, each device is probed every 5 minutes and failures are logged. A one shot
mode is also available:

chula# disk/smart —atv
sdal0: normal

sdal: normal

sda?2: normal

sda3: threshold exceeded
sdE1l: normal

sdF7: normal

Drives sda0, sdal are SCSI and the remainder are ATA. Note that other drives on the
same controller are ATA. Recalling that sdCO was previously listed, we can check to see
why no results were reported by sdCO:

chula# for(i in a3 CO)
echo identify device |
atazz /dev/sd$i >[2]/dev/null |
grep ’'Aflags’
flags lba 1llba smart power nop sct
flags lba

So we see that sdCO simply does not support the SMART feature set.
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Further Work

While the raw ATA interface has been used extensively from user space and has allowed
the removal of quirky functionality, device setup has not yet been addressed. For exam-
ple, both the Orion and AHCI drivers have an initialization routine similar to the follow-
ing

newdrive(Drive *d)

{
setfissig(d, getsig(d));
if(identify(d) != 0)
return SDeio;
setpowermode(d) ;
if(settxmode(d, d->udma) != 0)
return SDeio;
return SDok;

}

However in preparing this document, it was discovered that one sets the power mode
before setting the transfer mode and the other does the opposite. It is not clear that
this particular difference is a problem, but over time, such differences will be the source
of bugs. Neither the IDE nor the Marvell 50xx drivers sets the power mode at all.
Worse, none is capable of properly addressing drives with features such as PUIS (Power
Up In Standby) enabled. To addresses this problem all four of the ATA drivers would
need to be changed.

Rather than maintaining a number of mutually out-of-date drivers, it would be advanta-
geous to build an ATA analog of pc/sdscsi.c using the raw ATA interface to submit
ATA commands. There are some difficulties that make such a change a bit more than
trivial. Since current model for hot-pluggable devices is not compatible with the top-
down approach currently taken by sd this would need to be addressed. It does not seem
that this would be difficult. Interface resets after failed commands should also be
addressed.

Source

The current source including all the pc drivers and applications are available in the fol-
lowing contrib(1) packages on sources:

quanstro/fis,

quanstro/sd,

quanstro/atazz, and

quanstro/smart.

The following manual pages are included:
fis(2), sd(3), sdahci(3), sdaoe(3), sdloop(3), sdorion(3), atazz(8), and smart(8).
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ABSTRACT

The Universal Serial Bus is a complex and, therefore, a popular bus
on personal computers and other devices. Many devices including disks,
keyboards, mice, and network cards are attached to computers using it.
The bus is a tree with hubs as nodes and devices as leafs and uses pol-
ling from the root of the tree, which is the bus controller. It permits hot
plugging and removal of devices at any time. This paper describes the
system software used on Plan 9 to drive the bus and its devices. How to
use the software is not described here, but in the Plan 9 user’s manual.

1. Introduction

The Universal Serial Bus (or USB) [1] is a standard bus developed by a set of corpo-
rations including Intel, Compaqg, Microsoft, Digital, IBM, and Northern Telecom. It
started in 1994 with version 1 supporting two transfer modes: Low speed transfers at
1.5 Mb/s and full speed transfers at 12 Mb/s. Version 2 was introduced on 2000. It
defined, so-called, high speed transfers capable of 12 Mb/s. This is the version in use
today and is what the software described on this paper can drive. Version 3 of the stan-
dard was released in 2008 introducing 5 Gb/s transfers (called superspeed transfers).
However, as of today, there is no hardware in the market supporting this version of the
standard.

The bus structure is certainly complex, when compared to other buses, mostly
because of the requirements on the software. It is a made of a tree of devices with a
host controller at the root, hubs implementing branches, and devices attached to leaves
of the tree (to USB ports). There can be up to 127 devices attached to the bus including
hubs.

USB devices are standarized into classes of devices, further divided into subclasses,
and sets of devices speaking a particular protocol. Together, class, subclass, and proto-
col identify a device type, codified as a number known as a ‘““CSP”’. In practice some
devices belong to a ‘“‘vendor specific class’ that may contain any type of device, render-
ing the CSP useless. In this case vendor and product identifiers are the only choice to
determine which one is the device at hand.

A device may be in fact a combination of different devices packaged together. For
example, keyboard and mouse combos are packaged into a single device attached to a
single USB port. In part because of this, in part to try to simplify the interaction of the
software with devices, a device includes different addressable entities called endpoints,
grouped into interfaces. Each interface is an administrative entity that has its own CSP
and includes one or more endpoints. In our example, a keyboard and mouse combo
may provide two interfaces (one for the mouse and one for the keyboard).

Initially, all devices include a zero endpoint used for configuration purposes. The
setup endpoint is available as long as the device is attached. Other endpoints may be
configured later by the software, as dictated by the device. These are grouped into



interfaces, which correspond to a function performed by the device. Each interface has
also an associated CSP that identifies its type. In few words, an endpoint is an artifact
used for I/O and has an associated CSP indicating its purpose.

As of today, the Plan 9 USB software supports version 2 of the bus including sev-
eral drivers for disks, keyboards, mice, serial lines, ethernet cards, and KNX devices. It
is likely that more drivers will be added in the future. The software is responsible for
enumerating devices on the bus, configuring them, and providing interfaces to use them
and perform actual I/0.

The enumeration process consists on detecting devices attached to the bus and
assigning addresses to them. A newly attached device uses a well-known configuration
address to permit the software performing the enumeration to reach the new device. A
consequence is that only one device can be attached and configured at a time. Once the
new device has been given an address, another port may be permitted to attach another
device, which starts using the configuration address. Enumeration has to take into
account that hot-plugging is supported by the bus so that devices may be attached and
removed at any time.

Device configuration may not be trivial for some devices. This means that it is bet-
ter to keep as much of the USB software as feasible outside of the kernel. At least, the
part responsible for configuring devices. Configuration is generic in principle, because
devices include data to describe themselves. However, for many devices it is necessary
to perform specific configuration tasks, which may be complex as well. Once a device is
configured, one or several data pipes (endpoints) are available for use to operate on the
device.

For efficiency reasons it is desirable to keep the mechanism used for I/O within the
kernel. The idea is that after a device driver has configured a device the kernel provides
the actual mechanism for performing I/O and programs may perform read and write
system calls to obtain and to send data. For some devices, which require following spe-
cific interaction protocols, this may not be possible and a driver must sit between the
application and the I/0O mechanism provided by the kernel.

Device combos have implications for device drivers. A single device driver must be
responsible for the entire device, but several drivers may be required to deal with the
different functions of the device. That is the case of kb, which handles mouse and key-
board combos and thus corresponds to two different drivers.

Last but not least, several USB devices may be required for use during the boot pro-
cess. For example, keyboards and mice. This implies including them into the kernel as
boot files. Embedding all these drivers into the kernel as separate programs replicates
multiple times almost the same code for the C library and the 9P library, among other
utilities. Some mechanism is necessary to avoid this duplication.

These are the requirements on the software to drive USB. In what follows we
describe this software after a brief overview of the USB hardware and its protocol.

2. USB hardware and protocol

The purpose of USB is to perform transfers between the host controllers and
devices attached to the bus (see figure 1). All details are described in the specification
[1]. Here we introduce only the most relevant ones for understanding the rest of this
paper. As the Plan 9 software does, we also deviate from the standard in the description,
for simplicity.

There are three different controllers in use today. Two of them implement USB ver-
sion 1: the Universal Host Controller Interface, or UHCI [4], and the Open Host Controller
Interface, or OHCI [2]. The former was developed by Intel and the later was developed
by Compag, Microsoft, and National Semiconductor. Both are in use on current hard-
ware.
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The main difference between UHCI and OHCI is that the former does not provide
any indication whatsoever regarding which transfer is responsible for an interrupt, while
the later includes a more sensible interface to the software.

USB version 2 is implemented by the Enhanced Host Controller Interface or EHCI [3]
(which like UHCI does not provide any mean to know which transfer is responsible for an
interrupt). The EHCI controller is usually packaged along with one or more version 1
controllers, called companion controllers. This means that supporting USB 2.0 requires
drivers for all three controllers. In version 3 an Extensible Host Controller Interface, or
XHCI, includes a companion version 2 controller (therefore it can be expected that driv-
ing the four controllers will be necessary to drive USB 3.0). Its specification is not yet
available.

EHCI OHCI

port | port | port | port | port | port | port | port | port

kb &
mouse

Figure 1. An example Universal Serial Bus.

Packaged with the controllers are included a series of USB ports, where devices and
hubs may be attached (Hubs attach to a port and provide extra ports on the bus.) In
theory the root of the device tree is a hub, called a root hub. In practice the root hub
must be implemented by software. Most other systems do so. We tried not to do it to
avoid a significant amount of software.

On a 2.0 USB system ports on the root hub (that is, included in the host controller)
may be independently routed to either the 2.0 controller (EHCI) or to a companion USB
1.0 controller. This is done depending on the device speed. Full and low speed devices
are routed to the companion controller and high speed devices are kept routed to the
EHCI. For example, in the figure 1 a 1.0 hub is attached to the 2nd port. The companion
OHCl is responsible for this USB 1.0 subset of the USB 2.0 bus.

Data transfers are implemented by the host controller, which is able to poll devices
on the bus using TDMA and a communication protocol spoken on the USB wires. This
happens both for input and for output. There are four types of transfers used to talk to
endpoints, but it must be noted that an endpoint is capable of only one transfer type:

. Control transfers are RPCs to the device. Among other things, they permit config-
uring the device and recovering from soft errors.

. Bulk transfers are unidirectional transfers intended to send or receive a significant
amount of data (e.g., 512 Kbytes).
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. Interrupt transfers are not really interrupts, but unidirectional and small data
transfers (e.g., 8 bytes). They are asynchronous in nature but are not so in practice
(devices are polled). Ironically, to achieve the asynchronous character of the trans-
fer the device has to be polled often, meaning that these transfers are considered
synchronous by USB controllers.

. Isochronous transfers are unidirectional transfers that must be performed on a
timely basis. For example, audio output. They sacrifice error checking in favor of
timeliness.

There are forbidden combinations, but in general, for each transfer type we have full,
low, and high speed variants of the transfer type. Full and low speed ones are sup-
ported by all three controllers; High speed ones are supported only by EHCI. Bulk, inter-
rupt, and isochronous transfers correspond one to one to transfers understood by the
controller. Control transfers do not.

A control transfer is actually a sequence of two or more transfers. First, a setup
transfer asks the device to perform a control request, perhaps requiring a data transfer
from the host to the device or from the device to the host. Second, if the request
requires exchanging data between the controller and the device, a second transfer
exchanges data (this may be more than one transfer if not all data fits in a USB packet).
Third, an empty data transfer from the device to the controller reports the status for the
entire control transfer.

USB devices must understand a set of standard control requests, described in chap-
ter 9 of [1]. However, many devices implement non-standard requests (or perhaps stan-
darized requests that are specific of the device class). The most popular control
requests are those that retrieve descriptors from devices. These are standarized binary
descriptions for devices and device features. Some descriptors have to be implemented
by all devices while others are supported or not depending on the device. Obtaining
device descriptors is necessary to learn how many endpoints there are, what their types
are, and how to build a request to activate them and enable I/0.

On the bus a transfer requires multiple packets. Chapter 8 of [1] describes the pro-
tocol. Most details are uninteresting but the addressing and the data acknowledge
mechanism are important for the software.

Bus addresses are made out of a device address and an endpoint address. That is,
the addressable entities are the endpoints and not the devices. Device addresses are
assigned by the software. Endpoint addresses are dictated by the hardware.

All devices have initially (after attachment to the bus) an endpoint with address
zero, known as the device’s setup endpoint. It is always an endpoint using control
transfers and thus it is also known as the control endpoint. Its main purpose is to con-
figure the device.

Depending on the type of device other endpoints will be available once the device
has been configured. For example, a mouse is likely to have an interrupt input endpoint
to report mouse events, separate from the control endpoint. In the same way, a disk
drive usually has two bulk endpoints (one to write data to the device and one to read
data from it) although it may have a single input/output bulk endpoint. Addressing is
important here because information supplied by the device may specify that a given
endpoint address is the one to use for a particular task. Therefore, endpoint addresses
must be exposed to the USB software.

Data may be lost during transfers. As an acknowledge mechanism to recover from
this situation, successive packets sent from the controller to a given endpoint use one
out of two different values alternatively (the same happens on the other direction, from
the device to the controller). This is called the data toggle bit and toggles between two
values called data0 and datal. How this is codified varies from one controller to
another (and from one transfer type to another). Also, some high speed transfers use a
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different acknowledgment mechanism to be able to send multiple transfers on a single
bus time frame.

The important point for drivers is that due to errors the controller and the device
may be out of sync. At this point the device will simply refuse any transfer with the
wrong toggle. To continue operating the device, data toggles must be synchronized
again. Errors causing a cease of device I/O are called device stalls. Recovering from a
stall is called unstalling the device. But note that what stalls is really an endpoint and
not necessarily the entire device.

3. Plan 9’s USB overview

The Plan 9 USB software is organized as depicted in figure 2. The kernel includes
the usb(3) device driver, known as #u, in charge of providing I/O to endpoints present
on the bus. A suite of user programs provide for everything else. One program, usbd,
is in charge of bus enumeration. Remaining programs are USB device drivers. Both
usbd and device drivers employ a library, called the USB library, for common tasks and
data structures.

usbd
audio serial
hub kb disk
#u Plan 9 kernel
ehci uhci ohci

Figure 2. Organization of the USB software.

As figure 2 shows, drivers may be embedded into usbd (like kb and disk in the
figure) or kept as separate programs (like audio and serial in the figure.) The hub
driver is built into usbd and may not be started separately, because hubs play an
important role in bus enumeration.

The #u device is responsible for initializing the host controllers and abstracting
/O mechanisms used on the bus. Its external interface deviates from the standard in an
attempt to simplify things for users and device drivers. The only objects supplied by #u
are endpoints. An endpoint represents a communication channel to a device in the bus
(actually, to a bus address).

Figure 3 shows an example file tree provided by #u. Each endpoint is represented
by a directory that includes two files: data and ctl, similar to a network connection.
The former is used to perform actual 1/O and the later is used to issue control requests
for the endpoint (not to be confused with USB control transfers). Endpoints are named
epN. M, where N is the device address and M is the endpoint number. Endpoints with
name epN. O are therefore control endpoints.

At boot time #u provides one endpoint per root hub. Of course there is no such
thing as root hubs, but the user program usbd uses these initial endpoints to enumer-
ate the bus. Requests sent through them to query status of ports and to enable them are
intercepted by the software and implemented by relying on the host controller interface.
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Apart from this feature, there is no software implementation for USB root hubs on Plan
9.

For each new device discovered on the bus usbd creates another endpoint in #u
for its setup endpoint. This is used by usbd to perform part of the configuration for the
device and by the device driver to complete the configuration and, perhaps, to issue
other requests to the device. As a result of the configuration, other endpoints are cre-
ated for the device.

#u
ctl m meps 2
/ N\ / N\ / N\ / N\ / N\
ctl data ctl data ctl data «ctl data ctl data

Figure 3: Example USB file tree.

3.1. Kernel drivers

Usb(3) is the driver responsible for providing I/O access to the bus, by providing
the endpoint interface described above. Internally, it is built out of a generic device
driver that provides the file interface and three different controller drivers that are
linked into the former. The interface of the generic part to the rest of the kernel is simi-
lar to that in other devices, a Devtab structure. The interface between the generic
device driver and the three controller-specific drivers deserves some comments.

In general, all three controllers perform the same tasks. They provide a register
interface to query and change the status of USB ports on the root hub and use a memory
mapped interface with data structures used to perform I/O for all supported transfer
types. These data structures may be fancy and include binary trees.

Although much of the code could be shared between controllers (as done in other
systems) the particularities of each controller get in the way. For example, how to indi-
cate which data toggle to use for a transfer depends on the transfer type and also on the
controller used. Who controls the toggles (the hardware or the software) also depends
on the transfer type and on the controller. And the same can be said of many other
details. Factoring out the shared code between different controllers would make it nec-
essary to dive often into controller specific code (and data).

Instead of doing so, the Plan 9 #u device driver contains only a portable represen-
tation for endpoints to support the interface provided to user programs. It is up to each
controller to look into the portable representation to configure controller specific data
structures to match the portable representation. But for intercepting requests intended
for root hubs, all the implementation for I/O is kept on the controller specific part of the
code.

This is the portable representation for an endpoint, as kept in #u. All endpoints
are kept in a global array and the index for each one is kept in the idx field. Most of
the fields correspond to configuration information retrieved from the device by a user
level program and supplied later to the kernel. Other files are used for bookkeeping and
to synchronize access to the endpoint.
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struct Ep

{
Ref;
/* const once inited. */
int idx;
int nb;
Hci* hp;
Udev* dev;
Ep* ep0;
/* configuration */
QLock;
char* name;
int inuse;
int mode;
int clrhalt;
int debug;
char* info;
long maxpkt;
int ttype;
ulong load;
void* aux;
int rhrepl;
int toggle[2];
long pollival;
long hz;
long samplesz;
int ntds;
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The setup endpoint for a device is used to talk to the device and therefore repre-
sents the entire device. There is no separate abstraction to represent a USB device.
Instead, all endpoints keep in the epO field a link to the control endpoint representing
the device. A shared data structure maintains per-device information and can be found
linked at the dev field of any endpoint. It is declared as follows.

struct Udev

{

int nb;

int state;

int ishub;

int isroot;

int speed;

int hub;

int port;

Ep* eps[Ndeveps];
};
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A device is mostly an address for the device, kept in nb, and a series of endpoints, kept
in eps. Each endpoint has its own address, which matches the index in the per-device

endpoint array.

Provided an endpoint, the driver for a controller is responsible for performing 1/O
on it. To do so, and to provide access to the ports in the controller, the driver must
implement the following interface. Currently there are three implementations for EHCI,

UHCI, and OHCI.

*/

*/

7‘:/
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struct Hciimpl

{
void *aux; /* for controller info */
void (*init) (Hci*); /* dinit. controller */
void (*dump) (Hci*); /* debug */
void (*interrupt) (Ureg*, void*); /* service interrupt */
void (*epopen) (Ep*); /* prepare ep. for I/0 */
void (*epclose) (Ep*); /* terminate I/0 on ep. */
long (*epread) (Ep*,void*,long); /* transmit data for ep */
long (*epwrite) (Ep*,void*,long); /* receive data for ep */
char* (*seprintep) (char*,char*,Ep*); /* debug */
int (*portenable) (Hci*, int, int); /* enable/disable port */
int (*portreset)(Hci*, int, int); /* set/clear port reset */
int (*portstatus) (Hci*, int); /* get port status */
void (*debug) (Hci*, int); /* set/clear debug flag */
};

Init prepares the controller for operation. Dump, seprintep, and debug are used
to control debug diagnostics. Interrupt is obviously the interrupt handler for the
controller. All other functions are the interesting ones. They implement 1/O according
for endpoints described by the (portable) data structure shown above and are described
in the following sections.

3.2. Hub ports

Ports on root hubs are handled by portenable, portreset, and
portstatus. The common usbread and usbwrite functions intercept requests
directed to root hubs to query or adjust the status for their ports. Instead of sending
messages through the USB bus, usbread and usbwrite rely on port handling func-
tions provided by the controller driver. By doing so, usbd may remain (mostly) unaware
of the difference between root hubs and other hubs.

Instead of performing a full software emulation for root hubs, #u includes just a
few USB requests (those calling the functions described here). Usbd tries not to use
other hub features to avoid the need for a full emulation. However, some features are
required to configure hubs for operation and thus are used on actual (non-root) hubs.
This introduces into usbd a few places where the code takes different paths for root
and secondary hubs, but the alternative would be to implement a full emulation of root
hubs.

Other details necessary in practice to operate on root hubs (e.g., port power config-
uration) are dealt with in the controller initialization code. All other USB software
remains unaware of them.

3.3. Input/Output

The suite provided by epopen, epclose, epread, and epwrite provides I/O
through USB endpoints. The first two functions prepare the endpoint data structures for
I/0O and release them, respectively. To avoid resource consumption, an endpoint is kept
open only while necessary (while the endpoint data file is open). At all other times, the
controller driver keeps no state at all for the endpoint.

During epopen the generic description of the endpoint provided by the Ep data
structure is consulted to configure the actual data structures used by the hardware.
Therefore, there is no configuration interface between the generic and the controller
specific software (other than the agreed-upon endpoint data structure).

One problem introduced by this scheme is that the physical device may retain con-
figuration, such as protocol data toggles, between successive opens of the same end-
point. But closing an endpoint and opening it again must continue I/O from where it was
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left at. This issue is addressed by arranging for epclose to save this information in
the portable description of the endpoint, and by making epopen consult the saved
state. The Ep structure has an aux field for the controller driver to use. But note that
unless the endpoint is in use this field would be null, therefore, saved state is kept
within Ep itself.

Epread and Epwrite perform input and output from the bus. In general, they
switch on the endpoint transfer type and prepare a transfer of that type, but that is not
the case for control transfers.

USB control transfers may require different transfers depending on the request, as
said before. To make all control transfers look similar for the user, the interface pro-
vided to the user is a single write with the request (and any data sent to the device),
perhaps followed by a single read to retrieve data requested by the previous write.
The entire transfer is performed during the call to write. This permits retrieving the
error status, which is sent by the device at the end of the data transfer, when the
request is made. Any data retrieved from the device is kept in memory and given to the
user if read is called next (before another write).

Processes using the endpoint must in any case coordinate their requests and thus,
performing control transfers in this way does not introduce more race conditions than
those existing in the user code.

As an aid, processes not coordinating are kept apart by the DMEXCL permission
enforced by #u for endpoint data files. For those who care to look before using, the
endpoint control file reports whether the endpoint is in use or not.

Epread and epwrite are responsible for timing out unresponsive devices, rais-
ing an error in that case. Arguably, they time out only control and bulk requests. In gen-
eral these requests complete soon after being issued; Interrupt and isochronous
requests do not. Timing out these requests in the kernel in a controlled way helps can-
celing requests only when the device seems to be not responding. User timeouts might
occur with bad timing and confuse the device, which may be simply sending negative
acknowledgements while busy doing other things.

Recently we have found some devices where bulk requests may not complete until
further device activity. This suggests that only control requests should be timed out
even though most devices need timeouts on bulk requests to operate properly with
unresponsive devices.

Device drivers like audio and printers may exit after configuring their devices.
Using the endpoint data files suffices for them at this point. The problem is that Plan 9
software expects to find these files on conventional names at /dev. As an aid, #u
implements a control request capable of giving a second name (at #u) to an endpoint
data file.

4. Bus enumeration and hot plugging

Bus enumeration is performed by a single process executing in usbd. This pro-
cess starts by looking at endpoints existing at boot time. As said before a control end-
point is used to represent a device. The kernel device creates one such endpoint per
root hub. From there on, usbd asks for the status for each port in the hub. When a
device is connected to a port usbd asks the kernel to create a new endpoint for its con-
trol endpoint and, using it, retrieves device descriptors and performs several configura-
tion requests. After configuration, if the device is known to be a hub usbd adds the
endpoint to the list of hubs to poll, and polls it. Otherwise, if instructed to do so by its
configuration file, usbd starts a new process to execute the device driver for the
attached device.
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Only one process must use a device at a time. Therefore it is important for usbd
and the device driver to coordinate regarding access to USB devices. This problem has
been avoided by preventing both usbd and a device driver to own the same device. Fig-
ure 4 depicts the typical scenario. In the figure time flows top-down and most of the
time will be spent in the small dotted segments, which represent the device while in use.
The figure shows only the attachment/detachment process.

Initially, the device is attached to the bus. After that, a port poll done by usbd will
see that a device is connected to a port. After configuring the port, by issuing a reset
signal and enabling the port, usbd allocates an endpoint (by issuing a control request
to the kernel). This becomes the control endpoint for the device and represents the
entire device from now on.

device #u usbd driver

device attach 8)
port poll

port config

device config

start driver

device|config

device in use

device detach 8)

port poll

detach

i/o error

detach

time
Figure 4. Device attachment and detachment. Time flows down.

Then, usbd configures the device (assigns an address, reads device descriptors
reporting the type of device, and activates a configuration for the device). As part of the
configuration usbd supplies to the kernel some information about the device according
to its descriptors. Most of this information is not used by kernel. It is intended to pro-
vide enough information for drivers and users to locate devices, and to learn the rele-
vant data about an endpoint of interest. CSPs, vendor, and product identifiers, and
device strings are handled this way. As an example, this is the information supplied for
an endpoint:

; cat /dev/usb/ep3.0/ctl
enabled control rw speed full maxpkt 64 ival 0 samplesz 0 hz 0 hub 1 port 3 busy
storage csp 0x500608 vid 0x951 did 0x1613 Kingston ’'DT 101 IT’
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Once the device is configured, usbd is able to start a new process to execute the
device driver if instructed to do so. Either case, usbd will not touch the device from
now on. The driver started is free to open as many endpoints as needed, and to create
new endpoints for the device, should it require that, without interference from usbd.

At some point the physical device may be detached. Now one of two things will
happen. Either usbd notices that first, as the result of polling the port used by the
device; or the device driver learns it first because of 1/O errors while using the device.
The process noticing the event first, whichever it is, issues a detach control request to
the kernel to notify the detachment of the device.

Upon detachment, no further |/O is allowed and all requests (but for a few control
requests) return a ‘‘device is detached” error diagnostic. Thus, if usbd notices first it
causes the detachment of the device in the kernel. Any outstanding |I/O request is can-
celed and the driver is notified that the device is detached. If the device driver notices
first then it will detach the device and exit on its own (and at some point usbd will see
the port as detached).

Another device may be plugged into the port before the next poll done by usbd.
This can be detected because the port will not be enabled (although it will have a device
connected). In this case we pretend that the port suffered two events: a detach followed
by an attach. By doing it this way we can avoid the need for using interrupt endpoints
provided by most hubs (real non-root hubs) to report status changes for ports. This
saves the software to process such endpoints and also saves their software emulation in
the case of root hubs.

Device drivers providing a file system interface are very important regarding hot-
plugging of devices. These drivers must not simply exit when a device is detached.
When the device driver is embedded into usbd it may be that no process is currently
executing the driver’s code, because the file system implementation is shared in this
case. Thus, upon detachment the file interface is removed from the file tree and no fur-
ther action is taken.

When the device driver runs as a separate process it should stay running but
respond with |/O errors to any further 1/0 attempt. However, the file tree must be kept
alive and responding to permit any client to continue working, if only to exit cleanly.
Note that in other case, should the device be bound at /dev, the namespace would
become broken whenever /dev is used. When the user notices that the device is no
longer working the file system will be unmounted and at that point the driver exits.

5. USB device drivers

A USB device driver on Plan 9 is a user program responsible for configuring and
operating a USB device. When usbd notices a new device on the bus it inspects its static
configuration to see if a device driver must be started. Should that be the case, usbd
creates a new process to execute the driver (either by calling exec for external drivers
or by calling the driver’s init function for those linked within usbd).

External or standalone drivers must take the burden of locating the devices to
drive. By convention a driver will manage all devices known that are not managed by an
already executing driver. All the information needed for this purpose (including if the
device is in use by another driver) is available by reading the control files of existing
control endpoints. That is, files named /dev/usb/ep0.*/ctl.

In practice, a device driver may be started to serve an interface (as part of a driver
for the entire device). Thus device drivers must pay attention not only to the device CSP
but also to CSPs for device interfaces. On Plan 9 all this information is retrieved by read-
ing control files and most drivers may forget this detail.
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Many things done by USB drivers are done by several (when not all) drivers. The
corresponding code is kept in a USB library, which is also used by usbd. The main data
structure in the library is Dev. It represents an endpoint provided by #u.

After a driver (or usbd) identifies a device of interest (i.e., an endpoint) it calls the
library to create a Dev data structure for it, and spawns a new process using it as an
argument, to handle the device. For drivers built into usbd it is usbd who cares of
what has been said so far. For other drivers convenience routines are present in the USB
library that can do the job.

The driver entry point is not main, but a function called init that receives a Dev
data structure representing the device control endpoint. It is done this way to permit
the same code to be used both for the embedded version of the driver and for a stan-
dalone version executed as an independent program.

The Dev structure refers to an endpoint directory at #u and includes file descrip-
tors for the endpoint control and data files:

struct Dev

{
Ref;
char* dir; /* path for the endpoint dir */
int id; /* usb id for device or ep. number */
int dfd; /* descriptor for the data file */
int cfd; /* descriptor for the control file */
int maxpkt; /* cached from usb description */
Ref nerrs; /* number of errors in requests */
Usbdev* usb; /* USB description */
void* aux; /* for the device driver */
void (*free) (void*); /* idem. to release aux */

};

Initially only the control file is open. Usbd keeps the data file (for the control endpoint)
open while configuring the device but closes all descriptors before starting the device
driver. The device driver keeps both the control and the data files open most of the
time.

This data structure is reference counted to permit an endpoint to go only when no
part of the driver is using it. This is important specially for drivers providing a file sys-
tem interface, which might have outstanding requests while trying to shutdown the
device.

All the relevant USB device descriptors must be read from the device to determine
which interfaces are present and which endpoints should be used for I/O. This informa-
tion is gathered by the USB library and placed into a Usbdev structure pointed to by
Dev.usb. Therefore, few device drivers require reading descriptors themselves.

A driver must inspect the USB configuration information to locate interfaces with
CSPs that correspond to the functionality provided, and also to locate the endpoints to
be used for I/0. Despite help from the USB library all drivers must do this before allocat-
ing other endpoints on the device.

In some cases this is not enough. Some devices have descriptors that are specific
for them, and are not parsed by the USB library. The library places such unpacked
descriptors within the Usbdev structure, and the driver is responsible for parsing them
if necessary. Chapter 9 of [1] is a good reference for common USB descriptors. Specifica-
tion documents for particular device classes (or for particular devices) usually describe
all device-specific descriptors necessary to drive the hardware.

In many cases drivers may remain unaware of most standard control requests,
because the library has functions that do most of the work (configuring the device and
unstalling endpoints upon errors). Device specific requests on the other hand must
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always be issued by the driver, who knows when and how they must be done. The only
thing the library can do is to provide a general purpose usbcmd utility function and
some symbols to help building such requests.

5.1. Embedded drivers

For most drivers there is almost no difference between the embedded version and
the standalone one. As said above, either usbd or a main function for the driver takes
care of locating devices of interest and calling the driver’s init function for each
device found. A side effect of preparing a driver for embedding is that its main func-
tion may be borrowed almost entirely from another driver.

All other code is kept into a USB driver library that is linked to usbd (and also to
the standalone version of the driver). This library contains drivers and is not to be con-
fused with the USB library that is a convenience for writing drivers.

An important point for embedded drivers is that they must be careful not to rely on
static storage and must be programmed to be reentrant. This is necessary because sev-
eral instances of the driver may be created at different times to handle different devices,
and they should rely just on the Dev structure for the control endpoint to operate the
device (Of course further endpoints and other data structures can be created but none
of them may be static storage).

Reference counting is also important for embedded drivers. A driver should go
when the Dev reference supplied to its entry point goes down to zero. Initially, the
driver’s init function is given a Dev that counts one reference. When the reference
goes away the endpoint is closed and the device released. If this happens due to an
error, the driver issues a detach control request to the endpoint before releasing the
reference, causing the endpoint to be collected when the last reference goes away.
Drivers may install their own auxiliary structure and a free routine into Dev, as an aid to
the implementation and also to support clean exits.

5.2. File system interface

The file interface provided by some USB drivers is important because it is the con-
ventional interface for the corresponding devices on Plan 9. But it is also important
because it is a key piece of the hot plugging mechanism.

If a device is removed and the file system interface for its driver simply responds
with I/0O errors to any further request, or aborts, /dev may become broken in the name
space where this happens.

As devices come and go it is important to be able to see the file interface for
devices adjust accordingly. For example, a directory named /dev/sdU3.0, corre-
sponding to a disk for the device number 3, is expected to be there (albeit in a detached
state) upon disk disconnection; as long as there is someone using the file interface. Only
actual data transfers are reported as failed with |/O errors. Directories still work. When
the last user of this file is gone, the directory silently disappears. Otherwise, inserting
and removing a disk several times would lead to multiple (unused) directories and
device numbers would become large numbers hard to remember.

The venerable 9P library is not used by USB software because of the requirements
mentioned before. Instead, a small and specialized USB file system library is included in
the standard USB library.

The interface for a file server is defined by the following data structure:
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struct Usbfs

{
char name [Namesz] ;
uvlong qid;
Dev* dev;
void* aux;
int (*walk) (Usbfs *fs, Fid *f, char *name);
void (*clone) (Usbfs *fs, Fid *of, Fid *nf);
void (*clunk) (Usbfs *fs, Fid *£f);
int (*open) (Usbfs *fs, Fid *f, int mode);
long (*read) (Usbfs *fs, Fid *f, void *data, long count, vlong offset);
long (*write) (Usbfs *fs, Fid*f, void *data, long count, vlong offset);
int (*stat) (Usbfs *fs, Qid g, Dir *d);
void (*end) (Usbfs *fs);
¥

It can be seen how it includes both a name for the file tree and a Dev reference, point-
ing to the device behind the file system interface. Only operations named in Usbfs
have to be implemented (some of them may left null if not of interest). They work as
expected given their names.

Of these operations, open, read, and write are executed concurrently by the
library using different processes. Thus an implementation may block if necessary with-
out blocking the entire interface for the device (or worse, the entire set of drivers linked
into usbd). Remaining operations must terminate promptly and are supported by a sin-
gle, per client, process started by the library.

Despite concurrency there is no flush mechanism. Upon a flush the ongoing opera-
tion is left alone (only its result is ignored). This is not a problem in the case of USB
drivers. Some flushes happen after device errors (e.g., because an application or a user
interrupts a request). They find the device in a detached state as explained before. As a
side effect, the detach operation interrupts any further I/O, making flush unnecessary in
this case. Other flushes are legitimate interrupt requests issued by the user, and we
simple let the outstanding operations complete and be ignored when they do.

The file system interface is designed to stack file systems. The library provides a
file system implementation called usbdir that implements a single directory and
accepts calls to usbadd and usbdel functions to plug other file systems into this
directory. The name field in Usbfs is used as the name of the file tree when stacked
into this directory, and the gid field is used to multiplex the Qid space among different
file trees. This is the mechanism used to provide the same file interface, some times
within an entire tree provided by usbd, some times as a solitary tree provided by the
device.

6. Status and future work

The software described in this paper is operational. However, there are several
issues that must be addressed. Input Isochronous streams for OHCI controllers are not
yet implemented. As said before, bulk transfers should perhaps not be timed out by the
kernel. The ethernet driver seems to have problems and must be fixed. Also, due to
hardware unavailability, version 3.0 of the bus is not supported. In general, the source
must be reviewed to undergo some cleaning.

In the future these issues will be addressed and more drivers will be written for
other devices present on the bus.

There is plenty of room for performance tuning and optimization. The only opti-
mization introduced so far is using embedded buffers for transfer descriptors. Data
structures used to maintain controller specific transfer descriptors include a few bytes of
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data storage. For transfers small enough (which are common) no data buffer is allocated
and the embedded buffer is used instead.
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Abstract

We have ported the Plan 9 research operating system to the IBM Blue
Gene/L and /P series machines. In contrast to 20 years of tradition in
High Performance Computing (HPC), we require that programs access
network interfaces via the kernel, rather than the more traditional (for
HPC) OS bypass.

In this paper we discuss our research in modifying Plan 9 to support
sub-microsecond ”bits to the wire” (BTW) performance. Rather than
taking the traditional approach of radical optimization of the operating
system at every level, we apply a mathematical technique known as Cur-
rying, or pre-evaluation of functions with constant parameters; and add a
new capability to Plan 9, namely, process-private system calls. Currying
provides a technique for creating new functions in the kernel; process-
private system calls allow us to link those new functions to individual
processes.

1 Introduction

We have ported the Plan 9 research operating system to the IBM Blue Gene/L
and /P series machines. Our research goals in this work are aimed at rethinking
how HPC systems software is structured. One of our goals is to re-examine and,
if possible, remove the use of OS bypass in HPC systems.

OS bypass is a software technique in which the application, not the operating
sytem kernel, controls the network interface. The kernel driver is disabled, or, in
some cases, removed; the functions of the driver are replaced by an application
or library. All HPC systems in the ”"Top 50”, and in fact most HPC systems
in the Top 500, use OS bypass. As the name implies, the OS is completely

) . . .
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bypassed; packets move only at the direction of the application. This mode of
operation is a lot like the very earliest days of computers, where not a bit of I/O
moved unless the application directly tickled a bit of hardware. It involves the
application (or libraries) in the lowest possible level of hardware manipulation,
and even requires application libraries to replicate much of the operating systems
capabilities in networking, but the gains are seen as worth the cost.

One of the questions we wish to answer: is OS bypass still needed, or might
it be an anachronism driven by outdated ideas about the cost of using the
kernel for I/O7 The answer depends on measurement. There is not much doubt
about the kernel’s ability to move data at the maximum rate the network will
support; most of the questions have concerned the amount of time it takes to
get a message from the application to the network hardware. So-called short
message performance is crucial to many applications.

HPC network software performance is frequently characterized in terms of
"bits to the wire” (BTW) and ”ping-pong latency”. Bits to The Wire is a
measure of how long it takes, from the time an application initiates network
I/0, for the bits to appear on the physical wire. Ping-pong latency is time it
take a program to send a very small packet (ideally, one bit) from one node to
another, and get a response (usually also a bit). These numbers are important
as they greatly impact the performance of collectives (such as a global sum),
and collectives in turn can dominate application performance [2] [4] In an ideal
world, ping-pong latency is four times the "bits to the wire” number. Some
vendors claim to have hit the magical 1 microsecond ping-pong number, but a
more typical number is 2-3 microseconds, with a measured BTW number of 700
nanoseconds. However, these numbers always require dedicated hosts, devices
controlled by the application directly, no other network activity, and very tight
polling loops. The HPC systems are turned into dedicated network benchmark
devices.

A problem with OS bypass is that the HPC network becomes a single-user
device. Because one application owns the network, that network becomes un-
usable to any other program. This exclusivity requires, in turn, that all HPC
systems be provisioned with several networks, increasing cost and decreasing re-
liability. While the reduction in reliability it not obvious, one must consider that
the two networks are not redundant; they are both needed for the application
to run. A failure in either network aborts the application.

By providing the network to programs as a kernel device, rather than a
set of raw registers, we are making HPC usable to more than just specialized
programs. For instance, the global barrier on the Blue Gene systems is normally
only available to programs that link in the (huge) Deep Computing Messaging
Facility (DCMF) library or the MPI libraries!, which in turn link in the DCMF.
Any program which wishes to use the HPC network must be written as an MPI
application. This requirement leads to some real problems: what if we want
the shell to use the HPC network? Shells are not MPI applications; it makes

LMPI libraries are typically much larger than the Plan 9 kernel; indeed, the configure script
for OpenMPI is larger than the Plan 9 kernel
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no sense whatsoever to turn the shell into an MPI application, as it has uses
outside of MPI, such as starting MPI applications!

On Plan 9 we make the global barrier available as a kernel device, with
a simple read/write interface, so it is even accessible to shell scripts. For ex-
ample, to synchronize all our boot-time scripts, we can simply put echo 1 >
/dev/gibObarrier in the script. The network hardware becomes accessible to
any program that can open a file, not just specialized HPC programs.

Making network resources available as kernel-based files makes them more
accessible to all programs. Seperating the implementation from the usage re-
duces the chance that simple application bugs will lock up the network. Inter-
rupts, errors, resources conflicts, and sharing can be managed by the kernel.
That is why it is there in the first place. The only reason to use OS bypass is
the presumed cost of asking the kernel to perform network 1/0O.

One might think that the Plan 9 drivers, in order to equal the performance
of OS bypass, need to impose a very low overhead — in fact, no overhead at
all: how can a code path that goes through the kernel possibly equal an inlined
write to a register? The problem with this thinking, we have come to realize, is
the fact that complexity is conserved. It is true that the OS has been removed.
But the need for thread safety and safe access to shared resources can not be
removed: the support has to go somewhere. That somewhere is the runtime
library, in user mode.

Hence, while it is true that OS bypass has zero overhead in theory, it can
have very high overhead in fact. Programs that use OS bypass always use a
library; the library is usually threaded, with a full complement of locks (and
lockiing bugs and race conditions); OS functions are now in a library. In the
end, we have merely to offer lower overhead than the library.

There are security problems with OS bypass as well. To make OS bypass
work, the kernel must provide interfaces that to some extent break the security
model. On Blue Gene/P, for example, DMA engines are made available to
programs that allow them to overwrite arbitrary parts of memory. On Linux
HPC clusters, Infiniband and other 1/O devices are mapped in with mmap, and
users can activate DMAs that can overwrite parts of kernel memory. Indeed,
in spite of the IOMMUs which are supposed to protect memory from badly
behaved user programs, there have been recent BIOS bugs that allowed users
of virtual network interfaces to roam freely over memory above the 4 gigabyte
boundary. Mmap and direct network access are really a means to an end; the
end is low latency bits to the wire, not direct user access. It is so long since the
community has addressed the real issue that means have become confused with
ends.

2 Related work

The most common way to provide low latency device I/O to programs is to

let the programs take over the device. This technique is most commonly used

on graphics devices. Graphics devices are inherently single-user devices, with
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multiplexing provided by programs such as the X server. Network interfaces,
by contrast, are usually designed with multiple users in mind. Direct access
requires that the network be dedicated to one program. Multi-program access
is simply impossible with standard networks.

Trying to achieve high performance while preserving multiuser access to a
device has been achieved in only a few ways. In the HPC world, the most
common is to virtualize the network device, such that a single network device
appears to be 16 or 32 or more network devices. The device requires either
a complex hardware design or a microprocessor running a real-time operating
system, as in Infiniband interfaces: thus, the complex, microprocessor-based
interfaces do bypass the main OS, but don’t bypass the on-card OS. These
devices are usually used in the context of virtual machines. Device virtualization
requires hardware changes at every level of the system, including the addition
of a so-called iommu [1].

An older idea is to dynamically generate code as it is needed. For example,
the code to read a certain file can be generated on the fly, bypassing the layers
of software stack. The most known implementaiton of this idea is found in
Synthesis [3]. While the approach is intriguing, it has not proven to be practical,
and the system itself was not widely used.

The remaining way to achieve higher performance is by rigorous optimization
of the kernel. Programmers create hints to the compiler, in every source file,
about the expected behaviour of a branch; locks are removed; the compiler
flags are endlessly tweaked. In the end, this work results in slightly higher
throughput, but the latency — ”bits to the wire” — time changes little if at all.
It is still too slow. Recent experiences shows that very high levels of optimization
can introduce security holes, as was seen when a version of GCC optimized out
all pointer comparisons to NULL.

Surprisingly, there appears to have been little other work in the area. The
mainline users of operating systems do not care; they consider 1 millisecond
BTW to be fine. Those who do care use OS bypass. Hence the current lack of
innovation in the field: the problems are considered to be solved.

The status quo is unacceptable for a number of reasons. Virtualized device
hardware increases costs at every level in the I/O path. Device virtualization
adds a great deal of complexity, which results in bugs and security holes that are
not easily found. The libraries which use these devices have taken on many of
the attributes of an operating system, with threading, cache- and page-aligned
resource allocation, and failure and interrupt management. Multiple applica-
tions using multiple virtual network interfaces end up doing the same work, with
the same libraries, resulting in increased memory cost, higher power consump-
tion, and a general waste of resources all around. In the end, the applications
can not do as good a job as the kernel, as they are not running in priveleged
mode. Applications and libraries do not have access to virtual to physical page
mappings, for example, and as a result they can not optimize memory layout

as the kernel code.
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3 Our Approach

Our approach is a modification of the Synthesis approach. We do create curried
functions with optimized 1/O paths, but we do not generate code on the fly;
curried functions are written ahead of time and compiled with the kernel, and
only for some drivers, not all. The decision on whether to provide curried
functions is determined by the driver writer.

At run time, if access to the curried function is requested by a program, the
kernel pre-evaluates and pre-validates arguments and sets up the parameters for
the driver-provided curried function. The curried function is made available to
the user program as a private system call, i.e. the process structure for that
one program is extended to hold the new system call number and parameters
for the system call. Thus, instead of actually synthesizing code at runtime,
we augment the process structure so as to connect individual user processes to
curried functions which are already written.

We have achieved sub-microsecond system call performance with these two
changes. The impact of the changes on the kernel code is quite minor.

We will first digress into the nature of Curry functions, describe our changes
to the kernel and, finally discuss the performance improvements we have seen.

3.1 Currying

The technique we are using is well known in mathematical circles, and is called
currying. We will illustrate it by an example.

Given a function of two variables, f (z,y) = y/z, one may create a new
function, g (), if y is known, such that g (x) = f(z,y). For example, if y is
known to be 2, the function g might be g (z) = f (z,2).

We are interested in applying this idea to two key system calls: read and
write. Each takes a file descriptor, a pointer, a length, and an offset. In the
case of the Plan 9 kernel, we had used a kernel trace device and observed the
behavior of programs. Most programs:

e Used less than 32 distinct pages when passing data to system calls
e Opened a few files and used them for the life of the program
e Did very small I/O operations

We also learned that the bulk of the time for basic device I/O with very
small write sizes — the type of operation common to collective operations — was
taken up in two functions: the one that validated an open file descriptor, and
the one that validated an I/O address.

The application of currying was obvious: given a program which is calling
a kernel function read or write function: f (fd,address,size), with the same
file descriptor and same address, we ought to be able to make a new function:
g (size) = f (fd,address, size), or even g () = f (fd,address, size).

Tracing indicated that we could greatly reduce the overhead. Even on an 800
Mhz. Power PC, we could potentially get to 700 nanoseconds. This compares
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very favorably with the 125 ns it takes the hardware to actually perform the
global barrier.

3.2 Connecting curry support to user processes

The integration of curried code into the kernel is a problem. Dynamic code
generation looks more like a security hole than a solution.
Instead, we extended the kernel in a few key ways:

e extend the process structure to contain a private system call array, used
for fastpath system calls

e extend the system call code to use the private system call array when it
is passed an out-of-range system call number

e extend the driver to accept a fastpath command, with parameters, and to
create the curried system call

e extend the driver to provide the curried function. The function takes no
arguments, and uses pre-validated arguments from the private system call
entry structure

4 Implementation of private system calls on Plan 9
BG/P

To test the potential speeds of using private system calls, a system was imple-
mented to allow fast writes to the barrier network, specifically for global OR
operations, which are provided through /dev/gibOintr. The barrier network is
particularly attractive due to its extreme simplicity: the write for a global OR
requires that we write to a Device Control Register, a single instruction, which
in turn controls a wire connected to the CPU. Thus, it was easy to implement
an optimized path to the write on a per-process basis.

The modifications described here were made to a branch of the Plan 9 BG/P
kernel. This kernel differed from the one being used by other Plan 9 BG/P
developers only in that its portable incref and decref functions had been
redefined to be architecture-specific, a simple change to allow faster performance
through processor-specific customizations. In other words, we are comparing our
curried function support to an already-optimized kernel.

First, the data structure for holding fast system call data was defined in
the /sys/src/9k/port/portdat.h file (from this point on, kernel files will be
assumed to reside under /sys/src/9k/, thus port/portdat.h).

In the same file, the proc struct was modified to include the following dec-
larations:

/* Array of private system calls */

Fastcall *fc;
78



/* Our special fast system call struct */
struct Fastcall {

/* The system call number */

int scnum;

/* A communications endpoint */

Chan *c;

/* The handler function */

long (*fun) (Chan*, voidx, long);

void x*xbuf;

long n;

Figure 1: Fast system call struct

int cfd, gdf, scnum=256;

char areall1], cmd[256];

gfd = open("/dev/gib", ORDWR);

cfd open("/dev/gibOctl", OWRITE);
cmd
write(cfd, cmd, strlen(cmd));
close(cfd);

docall(scnum) ;

Figure 2: Sample code to set up a fastpath systemcall

/* # private system calls */
int fcount;

Programs are required to provide a system call number, a file descriptor,
pointer, and length. It may seem odd that the program must provide a system
call number. However, we did not see an obvious way to return the system
call number if the system chose it. We also realized that it is more consistent
with the rest of the system to have the client choose an identifier. That is how
9P works: clients choose the file identifier when a file is accessed. Note that,
because the Plan 9 system call interface has only two functions which can do
I/0, the Fastcall structure we defined above covers all possible 1/O operations.
The contrast with modern Unix systems is dramatic.

Next, we modified the Blue Gene barrier device, bgp/devgib.c, to accept
fastwrite as a command when written to /dev/gibOctl. When the command
is written, the kernel allocates a new Fastcall in the fc array, using a user-
provided system call number and a channel pointing to the barrier network,
then sets (*fun) to point to the gibfastwrite function and finally increments
fcount. The code to set up the fast path is shown in Figure 2.

Following the write, scnum contains a number for a private system call to
write to the barrier network. From there, a simple assembly function (here

smprint ("fastwrite %d %d O0x%p %»d", scnum, fd, area, sizeof(area));

79



TEXT docall(SB), 1, $0
SYSCALL
RETURN

Figure 3: User-defined system call code for Power PC

called docall) may be used to perform the actual private system call. The code
is shown in Figure 3.

When a system call interrupt is generated, the kernel typically checks if the
system call number matches one of the standard calls; if there is a match, it
calls the appropriate handler, otherwise it gives an error. However, the kernel
now also checks the user process’s fc array and calls the given (*fun) function
call if a matching private call exists. In the case of the barrier device, it calls
gibfastwrite, which writes '1’ to the Device Control Register. The fastcall
avoids several layers of generic code and argument checking, allowing for a far
faster write.

5 Results

In order to test the private system call, we wrote a short C program to request a
fast write for the barrier. It performs the fastpath setup as shown above. Then,
it calls it calls the private system call. The private system call is executed many
times and timed to find an average cost per call. As a baseline, the traditional
write call was also tested using a similar procedure.

We achived our goal of sub-microsecond bits to the wire. With the traditional
write path, it took approximately 3,000 cycles per write. Since the BG/P uses
850 MHz PowerPC processors, this means a normal write takes approximately
3.529 microseconds. However, when using the private system calls, it only takes
around 620 cycles to do a write, or 0.729 microseconds. The overall speedup
is 4.83. The result is a potential ping-pong performance of slightly under 3
microseconds, which is competitive wth the best OS bypass performance.

6 Conclusions and Future Work

Runtime systems for supercomputers have been stuck in a box for 20 years. The
penalty for using the operating system was so high that programmers developed
OS bypass software to get around the OS. The result was the creation of OS
software above the operating system boundary. Operating systems have been
recreated as user libraries. Frequently, the performance of OS bypass is cited
without taking into account the high overhead of these user-level operating
systems.

This paper shows an alternative to the false choice of slow operating systems

paths or fast user-level operating systems paths. It is possible to use a general-
80



purpose operating system for I/O and still achieve high performance.

We have managed the write side of the fastcall path. What remains is to im-
prove the read side. The read side may include an interrupt, which complicates
the issue a bit. We are going to need to provide a similar reduction in overhead
for interrupts.

We have started to look at curried pipes. Initial performance is not very
good, because the overhead of the Plan 9 kernel queues is so high. It is probably
time to re-examine the structure of that code in the kernel, and provide a faster
path for short blocks of data.

Our goal, in the end, is to show that IPC from a program to a user level file
server can be competitive with in-kernel file servers. Achieving this goal would
help improve the performance of file servers on Plan 9.
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ABSTRACT

Btfs is an attempt at an implementation of the BitTorrent protocol. The primary
goal is to design and program a BitTorrent client for Plan 9 from Bell Labs (referred to as
Plan 9 in the following) providing the basic functionalities found in most BitTorrent
clients. The general design and user interface are elaborated with the Plan 9 file server
model in mind.

1. Motivation

To start, there is no usable implementation of a BitTorrent client available on Plan 9. As it is a pretty
popular protocol nowadays, it seems like a good idea to provide that possibility for a (hopefully) growing
userbase. The distribution of the Plan 9 system could also benefit from it: there already are a few sites out
of Bell Labs - already mirroring the Plan 9 iso - which could altogether be seeders for a torrent of the iso,
hence relieving some of the load on the Bell Labs server.

Additionally, the BitTorrent protocol is both pretty simple and interesting as far as network protocols
go, hence getting a lot of interest from various projects. Its distributed nature, the tracker component set
aside, could lead to interesting developments on the Plan 9 platform. For example, the idea of a kind of
coupling between BitTorrent and some venti servers to distribute the blocks was suggested.

2. Choices

2.1. Port or native

A port of the mainline BitTorrent client would probably be possible since Python has already been
ported. However, there is no apparent obstacle to a native implementation following the Plan 9 file server
approach. Appart from the obvious satisfaction of having a native program which integrates well with Plan
9, it will also give the opportunity for an acme program as an additional user interface later (akin to acme
Mail). Finally, designing this project in its entirety is an educational opportunity to find out how well Plan
9 specific concepts like the file server approach and the csp model would fit in for a peer to peer program.

2.2. Language

As most of the Plan 9 code is written in C, this is the obvious choice. It allows for a better integration
with the rest of the system and makes it easier if one wants to reuse pieces of code from other programs.
However limbo fans should note there is another ongoing effort for a BitTorrent client (on inferno ) being
written in limbo.

2.3. HTTP queries

A BitTorrent tracker listens to http queries, thus one could write and add to the client the code needed
to send such queries, or one can rely on already existing components such as hget or webfs. The latter was
chosen, because there is no need for a rewrite when webfs is perfectly suited for this task, and again
because it fits better with the file server way. However, queries to trackers can contain NULs, and webfs

See mjl’s contrib: http://plan9 .bell-labs.com/sources/contrib/mjl/



currently does not allow that, so it needs to be slightly modified.

24. Threads

A BitTorrent client, like any peer to peer program, has to interact with a lot of other peers, and it is
composed of several independant tasks, therefore it makes sense to distribute these tasks amongst several
threads or procs. As threads are inherently safe to avoid race conditions, and since procs did not seem nec-
essary, only threads are used for now.

The scheduling in use is what seemed to be the simplest: for each peer one thread is created and it
gets all the pieces it can from this peer. The threads are synchronised with an A/f structure and each of them
relinquishes control with send(2) at points in the execution where it would supposedly wait for network
packets from the peer to come. An loproc(2) is used to avoid the situation where all the threads are blocked
because one of them is waiting on a dial. This design is of course subject to changes depending on how well
it will perform.

3. Implementation

The BitTorrent protocol makes use of a file (usually with .torrent extension) of metadata to describe
the so called torrent. Btfs creates a Torrent struct in memory to represent this torrent and its metadata. Sim-
ilarly, a Peer struct is used to hold the properties of each peer which btfs is communicating with.

The program is divided into four main parts as of now: the file server operations, parsing of the torrent file,
operations on the Torrent structure, and communications with the tracker(s) and other peers.

The file server provides a synthetic tree created with alloctree(2) (mounted by default on /n/btfs) on
which the user can act upon. The basic structure of the tree is envisionned like the following:

/
|-ctl
| -torrents
| -c3cb0d£d1d2839861ea79367145b202db7c09¢c52
| -tracker
| -announce
| -pieces

| -9a5a04f1ddff16de8f7bca8714e945083c4c53c7

where torrents are identified with their infohash (like ¢3cb0dfd1d2839861ea79367145b202db7c¢09c¢52).
One can imagine a lot of others files which, when read, would return some useful information. Writing
commands to the c#/ file will be the basic way to control btfs, ie to add new torrents, stop some active tor-
rents, throttle the upload/dowload rate, etc...

At the moment, only adding a torrent is supported, with the "add /path/to/file.torrent” command.

The torrent file metadata are organized as a bencoded structure - a simple encoding which consists of
a dictionary (associative array) of key/value pairs, the values themselves being of one of the following
types: byte string, integer, list, dictionary. For now, these data are just read sequentially and analysed
according to a documented set of dictionary keys. The corresponding values are stored in the Torrent struc-
ture as the decoding goes. This part should and will most certainly be rewritten as a more generic parser.

Most of the operations on the Torrent structure relate to the torrent pieces. Those are represented with
linked lists: a global one, and one for each peer. The elements of the global one correspond to the whole
torrent’s pieces, and hold information such as the position of the piece in the torrent. The elements of a
peer’s list represent the pieces which are yet to be downloaded from this peer.

The communications start with a call to the tracker, after the right request have been forged, using the
information from the torrent file. The tracker reply is parsed in the same fashion the torrent file was. As
said before, a thread is created for each peer reported by the tracker, with the following limit: the maximum
number of peers is arbitrarily fixed (to 20) for now - some specifications on the protocol state that for best

See patched /sys/src/cmd/webfs/url.c: http://plan9.bell-labs.com/sources/contrib/lejatorn/url.c
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efficiency this number should not be too high (< 55) anyway.
Each thread requests from its dedicated peer all the pieces, in random order, that the peer announced it had,
until all of them have been acquired.

4. Current state

A lot more needs to be done before btfs displays most of the expected functionalities from a BitTor-
rent client. In particular, the current main issues are: absolutely no support for seeding, no reply from some
specific trackers, and dealing with the concurrency for communicating with several peers at the same time.

No seeding not only means that it is currently impossible to distribute a resource, it also means that
the download rates will be impaired since most clients choke peers which do not seed in return.
The trackers issue will be investigated soon, it probably comes down to the tracker expecting an optional
parameter in the query, like the peer key or the tracker id.
As mentionned before, the general problem of multi peers communications without the threads blocking
each other should have been solved by the use of ioprocs. However, the current behavior is not what was
expected (all of the connections to the peers get closed except for the first one). This is the most immediate
concern and is what needs to be fixed first and foremost, therefore any help on the matter would be greatly
appreciated. Especially since once this is solved, btfs is expected to be usable to download in quite a few
cases.

5. Todo
On a longer time scale, the following items are planned:

° General improvements of the code: better error handling, fix some corner cases, hardcoded values,
and ugly algorithms.

o Better communications: requery the tracker regularly to get fresh info, reconnect to some peers, keep
a pool of threads ready. Use the other trackers in the tracker list.

° Enhance the file server: more "features" through the ctl file, and more files to read for info.

° Add rarest pieces first, and end game algorithms.

o Add dht support.

o An acme program as an additional user interface.

6. Check it out

Btfs can be downloaded from http://plan9.bell-labs.com/sources/contrib/lejatorn/; the directory usu-
ally contains the latest updates while the tarball should be a bit more stable. One will of course need a valid
torrent file to try btfs out. Either get it from any of the numerous torrent hosting sites or create it yourself,
with the mainline torrent creator btmakemetafile for example.

A quick tutorial:

webfs
btfs [-d datadir] [-m mountpoint] [-V]
echo ’'add /path/to/the/torrent/file.torrent’ > /path/to/the/mountpoint/ctl

Datadir is the directory where the downloaded files will be written (defaults to the user’s home), mount-
point is where the btfs tree will be mounted (defaults to /n/btfs), and -v is for some debug verbosity (very
verbose, therefore much slower).

See http://wiki.theory.org/BitTorrentSpecification#Tracker Response
The btfs binary is not copied out of its source directory, so one will have to copy it where suitable, or bind it, or invoke it
with its path.
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ABSTRACT

This Work-In-Progress report describes an application of the 9P distributed protocol to

configure and control resources on an autonomous robotic vehicle, ERTS. The vehicle was
designed and developed by the participants of a graduate level course on Embedded and
Real-Time systems at Indiana University, Bloomington. The goal of the ERTS project is
twofold — to teach students about embedded system development through the interaction
with the robotic vehicle and to act as a prototyping platform for researchers seeking to meet
experimental objectives in areas such as computer vision, artificial intelligence, situated
cognition and learning and others.
SYNCFS is a synchronous, double-buffered RAM-based virtual file system that defers
writes and stats to a simulated "clock edge”, thus governing the asynchronous sensor and
actuator components around a central common clock. The SYNCFS component model
allows dynamic configuration of sensor and actuator components and remote resource ac-
cess for these components when running in impoverished computing domains. This model
allows rapid prototyping of components on a laptop and "importing” of the autonomous
cart resources on the laptop during field tests. The file servers are implemented on Linux
using the 9P library implementation, npfs, and use the in-kernel 9P client, v9fs, to mount
them.

We are working on a native Windows userspace file system driver to support platform het-
erogeneity. We plan to build on prior work on organizing sensor networks and abstracting
real-time embedded systems through a file system interface and seek to extend this to inte-
grate with higher-level navigation systems. Some of the points under active consideration
include modifying 9P protocol to support aggregate communication in a sensor network,
using 9P over various embedded-network protocols, and exploring alternative programming
models for synchronous/reactive (SR) systems.

1. Introduction

ERTS (which stands for Embedded and Real-Time Systems) is a computer-controlled golf cart
developed for and by the participants of the introductory course on Embedded and Real-time
Systems. It was developed to demonstrate autonomous real-world navigation and serve as a
research platform to students and experimenters at Indiana University. This mission imposes
a need for a flexible, modular and composable architecture for rapid prototyping and faster
integration of software and hardware components in the embedded system. ERTS is a reactive
distributable embedded system, as the components (sensors, actuators, embedded controllers)
can be placed apart and communicate with each other through a channel interface. These
components maintain a persistent interaction with the environment, reacting to the inputs
from the environment and responding by sending outputs to it. Using a synchronous model
coupled with appropriate file system abstractions, we have developed a distibuted embedded
system runtime framework for ERTS.

At the heart of the ERTS software architecture is a synchronous commit file system, SYNCF'S,
explained in section 2. Section 3. describes the modular component framework which encap-
sulates SYNCF'S to support distributed embedded devices in the system. Finally, we discuss
the work in progress pertaining to the runtime framework of the ERTS vehicle.

2. SyncFS

SYNCF'S is a single-writer, multiple-readers file system with synchronous, system-wide com-
mits. The synchronizing element is a simulated clock edge modeled on the functionality of
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Figure 1: SyncFS component environment

globally clocked D flip-flop. In synchronous digital hardware, signals change only at clock
edges. The results of these changes, in absence of propogation delay, are conceptually in-
stantaneous. This makes synchronous systems easier to design and reason about. Several
issues related to concurrency, paralellism and fault tolerance are simplified in these models.
Automotive embedded systems, on the other hand, are inherently asynchronous (and so is the
world around us!). SYNCF'S provides a synchronizing element to the component layer above
it.

SYNCF'S supports a synchronous design model through a file-system interface. Part of this
support is provided through modification to standard file-I/O (FIO) handlers. Equally im-
portant is a collection of coding conventions, governing use of files acting as communication
channels. We prefer a light-weight imposition of coding conventions, if only because the de-
sign model and methods are still evolving. In other words, SYNCF'S is more an example of
methdological support, than a end in itself.

SYNCF'S implements synchronization by:

1. modifying file write calls to defer all actual write commits until a triggering event derived
from the server’'s physical clock.

2. modifying file stat calls to block the caller until all write commits are completed.

3. requiring all components to stat a common clock file at the outset of each cycle.

Under the SYNCF'S regimen, there are no data races, provided that all component-tasks
execute within a clock cycle.A file write may make successive changes to a file without effecting
its visible state to the rest of the system. On the server's virtual clock tick, the writer's version
is “latched” and committed so that it becomes visible to the readers. SYNCEFS update their
state concurrently within a clock edge. Like other reactive systems, this causes reactions
to compete with each other. New inputs arrive before the end of a reaction. For explicit
synchronization and to provide a common global time reference, SyncFS updates a read-only
clock file on each tick.

SYNCF'S builds on the embedded file system approach of Brown and Pisupati[3], whose work
was based on the original concepts prevalent in the Plan 9 Operating System from Bell Labs.
The file namespace hierarchy provides a shared, language-independent region through which
the ERTS system components interact. Thus, any language with standard |/O—that is, any
language—can interact with system components. In class projects, for example, we use the
Python scripting language for initial prototpying, and can incrementally convert components
to C, Java, or other targets.

3. Component Framework

The component framework is a implementation-independent, conceptual model describing
the components and interaction between them. Components can either be real components
accesing the device through a driver, or virtual components which interface with other real
components in the component ecosystem.
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Figure 1 shows real sensor components like compass, GPS and virtual components like the
heading controller that control the dynamics of the cart. A physical resource (sensor or
actuator) in the system is represented by a textual data file that shadows the data image of
the device. The interaction with these components is translated into physical transactions with
the sensors or actuators if it is a real component or inter-component transactions in case of
a virtual component. Components internally consist of a reactive kernel and a data handling
layer coupled with the data-in and data-out interfaces.

Each component waits for a simulated
clock edge, reads from its input channels,

. . . C t Functi lit
executes a function f and writes to its omponemt "uneTona™y

output channels. A component exposes Control Unit || Data Unit
a file system hierarchy consisting of the Reactive | D2t
command file, through which the compo- Kernel ?andhng
nent is controlled, a status file, through | ayer
. nput Output
which the state of the component can be interfaces interfaces

captured. Some complex compoenents
have other auxiliary files for specialized
control. Since the components model a
design function behavior of a state ma-
chine, they appear as cyclic reactive processes that read/write files at the beginning/end of
every cycle, performing a certain function, f. Components have input and output ports con-
nected to other components in the environment. These ports go through SYNCFS which acts
as a mediator to ensure synchronous access behavior on these channels.

All components are peers that may access each others’ resources as exposed by the SYNCF'S
file server. In contrast to Plan 9, each component is expected to explicitly add itself to the
global SYNCF'S namespace to interact with other components. A terminal component is the
one that only accesses its own data.

Figure 2: Component architecture

3.1. Golf cart components

All file writes are globally synchronized when a ubiquitous system tick (a macrotick in Kopetz's
terminology[2]) occurs. SYNCE'S provides an implicit clock component to which new and
reentering components can explicitly synchronize. We have demonstrated ERTS in scenarios
involving autonomous vehicle navigation. Several components for devices like compass, GPS,
joystick and virtual components like bearing control, steering amplifier, configuration process
and others interact to achieve autonomous navigation. The file format used by us to exchange
structured data between these components is JavaScript Object Notation (JSON) for it is
widely used, relatively light-weight, simple and readable.

4. Work in Progress
4.1. Windows file system support

ERTS uses the v9fs modules shipped with the Linux kernel since 2.6.14 to mount the SYNCF'S
file system. Linux has primarily been the prototyping and development platform used until now.
One of the primary missions of the ERTS robotic vehicles is to serve as a experimental platform
for research in areas ranging from robotic vision, human-robot interaction to safety-critical
systems. As we engage the cart in more collaborative research at Indiana University, we feel
the need to take into consideration heterogeneous development environments and platforms.
Oftentimes, the most preferred platform of development for researchers achieving experimental
objectives in allied fields is Microsoft(©Windows. This can be partly attributed to the lack of
availability of specialized tools and software on other platforms.

This compelled us to add native support for 9P file system in Windows. We chose the approach
of writing a userspace file system driver over a Windows Installable File System (IFS) driver
to save us from the effort of writing a driver in the Windows kernel, and save time to focus
on other important aspects of the project.

This driver is partially implemented and we hope to have full support in a few weeks. This
would enable us to write components around SYNCFS in Windows, and enable interaction of
these components with our existing computer vision algorithms for horizon detection, visual
tracking and object recognition, collaboratively developed under the hood of ERTS vision
project at Indiana University.
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4.2. Component Framework in Inferno

We are experimenting with implementing the components in hosted Inferno to provide us with
the desired platform heterogeneity. We intend to rewrite some of the components in Limbo and
use some of the abstractions provided by the language, in the form of typed channels and CSP
paradigm to implement a synchronous, time-triggered embedded programming framework.

5. Future Directions

In our effort to incorporate a homogeneous resource access interface in the underlying file
system, we have encountered several potential directions to explore in the ERTS project.

5.1. Programming Models for Synchronous Design Methodology

A file namespace hierarchy provides a homogeneous representation of heteregeneous resources,
but it provides no explicit means of governing process synchronization and scheduling. Real-
time embedded systems, safety- critical systems usually employ a synchronous design method-
ology through a higher level abstraction of the underlying architecture and system.

Time-triggered programming languages like ESTEREL, GIOTTO can aptly specify and model
concurrent reactive systems. We intend to explore synchronous programming models and illus-
trate its use in real-time embedded systems using ERTS. In its current stage of implementation,
we have an almost working functional interface to the SYNCF'S component model, written in
the Scheme programming language.

5.2. Support for embedded-network protocols

As the DARPA Grand challenge demonstrated, more and more autonomous vehicles are now
employing “drive-by-wire” and “steer-by-wire” technologies to off-load critical navigation func-
tionality to a group of networked computers. We would like to push the frontier of SYNCF'S
beyond ERTS's existing support for Ethernet/Linux network. Embedded-network protocols lay
emphasis on higher data rates, low power consumption, time and event-triggered behavior.
The delays due to sequential component dependencies can be reduced by implementing 9P
over these protocols. Automotive systems have been using specialized bus-based protocols like
CAN-bus and other fieldbus protocols for over a decade.

Realtime Ethernet protocols like Ethernet Powerline, EtherCAT provide synchronized, real-time
network access over standard Ethernet. These are most likely our initial favorable targets to
port 9P to minimize the inter-component communication delays.

5.3. Distributed Clock Synchronization

When used in a distributed context, there is a certain performance penalty incurred by SYNCF'S
owing to its design. Performance and resiliency concerns thus make distributed clock synchro-
nization desirable. This is an important goal in further development of SYNCF'S.

6. Conclusion

In a couple of years, commercial premium-class vehicles will contain over 1 GB of onboard sys-
tem software. Autonomous vehicles are also geared with drive-by-wire capability which enforces
the need for distributed, reusable component-based models for representing embedded systems.
We believe the approach we have taken is quite viable for rapid prototyping in resource-rich
environments. For our purposes, language independence and light-weight, composable tool
chain are extremely important benefits.
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ABSTRACT

Here | report on recent work done in the process of moving native Inferno to a tablet
PC. One part of the work was the porting of Francisco J. Ballesteros's new Plan9 USB
support to Inferno. The other was a VGA driver that operates with the 640x480x4 mode
common to all VGA controllers.

Introduction

Recently, | worked on getting native Inferno to run on a tablet PC on loan from the vendor.
This ruggedized unit had a camera/2D barcode reader, a touch panel, Ethernet, and 802.11.
What it did not have was PS/2 keyboard or mouse interfaces. Unable to get the legacy support
working and knowing that USB support would probably be needed anyway, | ported to Inferno
the new Plan9 USB support from Franciso J. Ballesteros[1]. After getting it running in a text-
only mode, it was natural to expect some form of graphics, particularly when the touchpad was
being used. After a little searching, it became clear that it was possible to write a driver that
handled the VGA features that are common to all controllers with only a moderate amount of
effort. Here are the results of those efforts.

USB

There are four main components of the Plan9 USB support: the [uoe]hci drivers, a USB
support library, the usbd daemon, and the drivers for individual USB devices.

USB HCI Drivers

Only minimal changes were required to port the files usbohci.c, usbuhci.c, and usbehci.c to
Inferno. One change was in the calls to kproc(10). Inferno’s version takes one more argument
than Plan9’'s. The EHCI driver uses clink as a structure member name. However clink is a
macro in Inferno. The OHCI driver required a small change to the initialization sequence on
the system where OHCI testing was done. Without this change, if no device was plugged into
some port when the system came up, it would never detect one inserted after the system was
up. The biggest change to these drivers was moving some of the ilock(10) and iunlock(10)
calls around a bit. In particular, wakeup(10) could not be called while an ilock was held.
Otherwise, there was a good chance the system would panic when an attempt was made to
acquire an already-held ilock.

USB Support Library

The most obvious change in porting the USB support library is the translation of it from C
to Limbo. One major change in functionality was introduced, however. In particular the USB
library provides support for serving a small file tree separate from the files provided by the
HCI drivers. This functionality was dropped, with the plan to implement it later if needed.
Otherwise, the library was a pretty straightforward merging of the C source files, translating
them into one Limbo file. The resulting library is /dis/lib/usb/usb.dis.

USB Daemon

As with the library, the daemon port consisted of merging and translating the C files for usbd
into Limbo. However, the loading of the device database and the starting of child driver
processes was modified. Specifically, the existing Inferno device database format and calling
sequence for child drivers was retained. As a consequence of the removal of file server support
in the USB support library, the file /dev/usbdctl was not implemented.



USB Device Drivers

The original Inferno USB daemon took advantage of the nature of Inferno modules to im-
plement the drivers for individual devices attached to USB ports. All such drivers have a
common initialization entry point. When a newly inserted device is recognized, the relevant
driver module is loaded and a new process is spawned on that driver’s initialization function.
To date, three such drivers have been implemented.

Keyboard Driver

This driver borrowed elements from several sources including the original Inferno USB keyboard
driver, the Inferno native PS/2 keyboard driver, and the new Plan9 USB keyboard driver. It
handles a basic ASCII keyboard with repeat. The implementation includes the function keys,
the arrow keys, and the home, end, page up, and page down keys.

Mouse Driver

The mouse driver takes USB mouse messages and translates them into the form necessary to
write them into /dev/pointer. To support this, devpointer.c was modified to allow more than
one process to have /dev/pointer open at a time.

Mass Storage Driver

Much of the original Inferno mass storage driver was kept in this implementation. The driver
has been tested on a USB memory stick and on a USB-connected CD-ROM drive.

Baseline VGA Driver

The world of PC video controllers is notorious for its complex and often undocumented register
interfaces. ldentifying which controller is present, then applying the right magic formula of
settings to get it into a particular mode is nightmarish. However, practically all VGA controllers
implement the same interface as the original IBM VGA controller. That controller's two most
useful modes were a 320x200x8 mode and a 640x480x4 mode. Although woefully inadequate
for use on a desk top or most laptops, they are not entirely unreasonable for use in a touchpanel-
based application, where the minimum size of objects is limited by the size of a person’s finger.
Furthermore, the 640x480 mode covers 63% of the width and 80% of the height of a typical
1024x600 netbook screen. Therefore, although no substitute for full VGA support, there is
enough utility in implementing a common denominator VGA driver to invest the effort.

The driver vgabase.c supports these two video modes on all VGA controllers it's been tried on,
including that of gemu. It provides the enable, drawinit, and flush functions of the VGAdev
structure. It also provides the enable, load, and move functions of the VGAcur structure,
implementing a software cursor. (The original VGA controller did not have a hardware graphics

cursor.)

The driver itself handles the appropriate register initialization when the drawinit command is
given to /dev/vgactl. Prior to that the resolution and depth were written into the VGAscr
structure, and they are referenced to determine which of the two supported modes is required.
Getting the exact register setting is a little tricky because the original IBM documentation was
vague on a few points. However, there are a number of resources out there that help fill in
the details, most notably the svgalib implementation. In the case of 640x480x4, the default
colormap doesn’t work very well, so the driver overrides it with a fixed colormap. It is possible
to assign some colors along with shades of gray that are mostly acceptable with existing
Inferno applications, a straight 16-level grayscale colormap is often preferred. Furthermore,
the colormap can be overridden by an application program.

Implementing the flush operation is an exercise in deciphering the memory layout details for
the frame buffer. In the 320x200x8 mode, things are much as one would expect. A block of
the address space is assigned to the frame buffer and each pixel is stored in the frame buffer
as a one-byte index into the colormap. The 640x480x4 mode is another matter entirely. In
this mode there are four planes of memory each laid out as a 640x480x1 screen. Each pixel is
made from one bit of each of these planes. Although a little messy, this by itself wouldn't be
too bad. However, all four planes share the same address space, and other controller registers
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determine how each byte of data written is applied to the four planes. The way it gets handled
in vgabase.c is to split the screen image out into the four bit-planes. Then for each row, the
controller is programmed to load each plane in sequence and the row is written to that plane.

As mentioned above, the graphics cursor is implemented in software. Each time the cursor
position is set, the contents of the screen are read and the and/or operations for the cursor
are applied before the data is written back. To keep it updated, there is a 50mS timer that
checks to see if flush has overwritten any part of the cursor, and if so repaints it.

Future Work

The first avenue for further work is adding support for other types of USB devices. The Plan9
support includes support for Ethernet, audio, printer, and serial devices, none of which have
been included in the Inferno support reported here. Also little testing has been done on the
OHCI and UHCI drivers, so there's a good chance that some issues will arise.

For the VGA driver, the primary opportunity for improvement is performance. On slower
machines, painting a screen in wm/man is noticeably slow. Whether more performance can
be found is uncertain, but in some settings more is needed.
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ABSTRACT

Irc, internet relay chat, is a popular chat protocol. Ircfs(4) is an irc
client that maintains a connection to an irc server, and exports irc func-
tionality through the styx/9p protocol. Wm/irc is a Tk program that pro-
vides a user interface to the file system interface. Ircfs and wm/irc have
been used from early stages of development with only a few remaining
features to be implemented and bugs to be fixed.

Introduction

Ircfs is typically run on a computer with a stable internet connection, with its files
exported over styx. Another machine then mounts the file tree and accesses it using
wm/irc. Ircfs+wm/irc was intended to replace the common screen+irssi set up. It has
already done that for me and turned out to be an improvement: Ircfs is a more generic
and reusable irc client, with no user interface logic in it. Wm/irc is a simple user inter-
face program, not (very) specific to irc. Because the two programs are separate, they
have been written and can be debugged and started independently. The user interface
is run locally and thus always responsive.

Ircfs and wm/irc are both written in Limbo. More information including the code is
available on the ircfs home page* and in the manual pages ircfs(4) and wm—irc(1).

This report continues with an overview of ircfs, followed by a description of wm/irc’'s
features and concludes with an explanation of design decisions and ideas for improve-
ments.

Ircfs
Let’s start with an example:

% mount {ircfs freenode} /mnt/irc

% cd /mnt/irc

% echo ’'connect net!irc.freenode.net!6667 mjlo’ >ctl
% 1ls -1

d—-r—-xr-xr-x M 2 ircfs ircfs 0 Sep 28 15:45 O
———wW——w——w— M 2 ircfs ircfs 0 Sep 28 15:45 ctl
——Tr——r——1r— M 2 ircfs ircfs 0 Sep 28 15:45 event
——T——T—-——T— M 2 ircfs ircfs 0 Sep 28 15:45 nick
—Tr——r——Tr— M 2 ircfs ircfs 0 Sep 28 15:45 pong
——rw—rw—-rw— M 2 ircfs ircfs 0 Sep 28 15:45 raw

% cat nick
mjlo

The ctl file accepts plain text commands ranging from connecting and disconnecting

* Ircfs, http://www.ueber.net/code/r/ircfs



to joining channels. Nick returns the current nick of the user. Raw allows reading and
writing of raw irc commands (not normally used). Pong is a file that returns the delay
of irc server responses to irc ping commands periodically sent by ircfs. Ircfs users can
use this to detect disruption of the irc connection between ircfs and the irc server, and
the styx connection between wmy/irc and ircfs. Event returns a line for each change of
the user’s nick, and added and removed channels/users (due to join or part com-
mands, or queries from other users). Reads on raw, pong and event block until data
becomes available.

Each irc channel and user is represented by a directory. These directories directly map
to windows in wm/irc. Again an example:

% echo ’join #inferno’ >ctl
% cat 2/name

#inferno

% 1s =1 2/

———w——w—w— M 2 ircfs ircfs 0 Sep 28 15:45 2/ctl
——rw—rw—rw— M 2 ircfs ircfs 0 Sep 28 15:45 2/data
—Tr——Tr——1r— M 2 ircfs ircfs 0 Sep 28 15:45 2/name

——Tr——1r——T— M 2 dircfs ircfs 0 Sep 28 15:45 2/users
% echo hi! >2/data

The example above shows how to join a channel and say something. Note that this is
normally done in wm/irc, with the command /join #inferno, after which the mes-
sage new 2 would be returned on the event file, and a new window for directory 2
would be opened by wm/irc.

A special directory O always exists, e.g. the irc server message of the day. Each direc-
tory has a ctl file for writing commands (all those accepted by the top-level ctl file,
plus some only for channels/users), a data file for reading and writing text, a name
file for reading the name of the channel/user, and a users file from which changes of
user presence can be read, i.e. users joining, leaving or renaming. Reads of the files
data and users block until data becomes available. Lines written to the data file are
sent to the channel/user as text. Lines other users write, or meta messages such as
users joining/leaving or a change of the topic, are read from the data file with a charac-
ter prefixed to indicate the type of the line (text, meta information). The users file
returns lines when users join/leave the channel. This is used by wm/irc to provide tab
completion for names.

Wm/irc

Wm/irc is a user interface consisting of three parts: On the left a list of names of
channels/users, for each of which wm/irc maintains a windowt. In the middle/right a
text area that holds text from the data file, showing the text of the currently selected
window. At the bottom is a text field for typing text and commands.

Wm/irc can handle multiple ircfs file trees, connections to multiple irc servers. Multiple
file trees are typically exported using one styxlisten(1) and mounted on the machine
running wm/irc. Note that Inferno’s styxlisten and mount(1) can authenticate and
encrypt the connection.

Wm/irc can be started with multiple paths of file trees as arguments. Paths can be
added and removed during operation. For each file tree, the status window (special
directory 0) is opened for executing commands on, e.g. connect to get started. New
windows are created for new channels/users, as indicated by the continuously read
event file.

The term window is misleading, it is just a Tk text widget.
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Wm/irc stays informed about the user’s own name for each irc file tree, and will high-
light windows with lines containing the user’s name. Additional patterns to highlight
can be specified on the command-line. Unread windows with highlighted text have an
= before their name in the list on the left, unread non-highlighted text a +, meta mes-
sages a — and delayed status windows are marked with a ~. In the text area itself, high-
lighted text has a yellow background.

Wm/irc has keyboard shortcuts for navigating among windows, e.g. to the next window
with a highlight or the previously selected window. Clicking on the name in the list
switches to that window.

Text can be copy-pasted with acme-like chording. A plumb button allows selected text
to be plumbed. Searching in the text area (reverse by default, from most to least recent)
is done from a dedicated text field. Matches are marked by an orange background.

A line typed in the text field is written to that window’s data file when return is
pressed, unless it starts with a single slash. A single slash makes the line a command.
If the first word of the line (minus slash) is win, the remainder is interpreted by wm/irc.
Otherwise, the line minus slash is written to the window’s ct1 file. For example, /win
quit causes wm/irc to quit while /quit causes quit to be written to the ircfs ctl
file, causing it to disconnect from the irc server.

Implementation details
Line counts:

1656 ./appl/cmd/ircfs.b
1446 ./appl/wm/irc.b
397 ./appl/lib/irc.b
125 ./module/irc.m
3624 total

The library parses and packs irc messages, converting between strings and adt’s repre-
senting a message. Ircfs uses this library and otherwise just maintains the irc connec-
tion and the state of all channels/users, continuously handling irc and styx messages.
The functions for handling a styx message, handling an irc message and handling writes
to ctl files are the largest, followed by the code maintaining the data structures,
including history for all channels/users and accounting for blocked styx reads.

Discussion and future work

Ircfs and wm/irc are separate programs with distinct functionality, but together provide
an easy to use irc client. Wm/irc has practically no irc-specific code and the ircfs styx
file tree is not very irc-specific either. Wm/irc could be reused for other instant mes-
sage protocols, perhaps requiring small modifications to the styx interface. The styx
interface has evolved during development of ircfs and wm/irc, each time adjusting the
behaviour of one program to the needs of the other while keeping the code and mecha-
nisms simple.

Ircfs only maintains a single irc connection. To connect to multiple servers, just start
multiple ircfs’es. Of course, wm/irc does support multiple ircfs’es, and multiple ircfs’es
can be exported on a single styx connection.

Most irc clients reconnect to the irc server when disconnected. Ircfs does not. First, |
haven’t needed that feature since the machine | run ircfs on has a very stable internet
connection (the machine | run wm/irc on does not however). Second, it can be tricky to
determine whether a disconnect should be followed by a reconnect. Constantly recon-
necting is rarely appreciated by server operators. Perhaps a third reason is that such a
feature would require quite some code, especially if channels must be joined automati-
cally too.

Channels and users are represented by a directory in ircfs’ styx interface. The names of
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those directories are unique numbers, not the names of the channel/user. | cannot
recall the original reason for this choice, but there are problems with directories named
after the channel/user. First, irc is case insensitive for channel and user names (with
quirks for special characters), so there is no unique or even a canonical name for a chan-
nel. Second, users can change their name, requiring a change of the directory name,
making the path of open file descriptors unusable for e.g. reopens or opens of the ctl
file given a previously opened data file. In short, the semantics of such directories are
tricky while the semantics of numbered directories are not.

Not all irc commands have been implemented, e.g. those used by irc server operators. |
have not needed those commands, and because documentation of irc commands is
often incomplete and/or does not match practice, it makes little sense to write code
them.

Wm/irc could be made to start up faster. Many files are opened and the Tk interface is
updated a lot while starting. More files could be opened concurrently at start up, and Tk
updates batched. However, ircfs does not distinguish existing state from new state to
users of its files, so wm/irc cannot know when the start up phase ends. It would also
require quite some code, while recently added more concurrent file opening has
improved start up time already.

A larger issue that will require some redesign: Ircfs and wm/irc have no good way to
know whether some lines from data files have been read by the user. This sometimes
causes messages to be overlooked. | have not yet found a satisfactory solution to this
problem. Currently ircfs keeps track of which data has been read from a data file. Data
that has been read before is returned in multiple lines per styx read request, new data
one line at a time. When wm/irc receives multiple lines in one read, it knows those lines
have been read before and will never highlight these lines. This mechanism is inaccu-
rate for two reasons. First, some irc directories contain only one line and thus will
always appear unread and potentially cause highlights. Second, and more serious, any
running wm/irc, or any other user of the jrcfs, will cause data to be marked as read.
There is currently no direct relation to human interaction with e.g. wm/irc and data
being marked as read.

Wm/irc opens all windows by default. In same cases, e.g. when on a low-bandwidth
connection, it is not desirable to open all windows or real all history. Wm/irc has an
option to keep all windows closed by default. The wm/irc commands to open, close and
list (unopened) windows have not been used a lot and might need improvement. Ircfs
also has a mechanism to limit the amount of history to send: by a wstat(2) that only
sets the 1ength field. This is not a very clean mechanism, and at least too bothersome
to tool-users of the data file, when history must often be ignored.

Connecting to an irc server is done by the connect ctl command (or reconnect to reuse
the last parameters). This styx write for these commands does not return until the con-
nection succeeds or fails. This can take some time since some irc servers stall the con-
nection while verifying it. Wm/irc can handle this now (before this was fixed it would
block the entire user interface), but other users of ircfs might find this behaviour trou-
blesome.

Wm/irc adds colors and underlines to the editable text areas. Editing sometimes causes
the mark up to be lost or mangled due to how these are configured with Tk. | doubt
this problem has an elegant solution.

Wm/irc allows acme-like chording (in both text(9) area and entry(9) fields, each requir-
ing different code), and plumbing by clicking a button. It is a pity this has to be imple-
mented by wm/irc. It would be nice if this code would be provided as generic Tk func-
tionality.
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ABSTRACT

We are working on a project to interconnect and control home
devices from a hive of mini computers. We have started with sensors and
actuators for the home. In order to do this we have written an implemen-
tation of the Knx [1] protocol stack for Plan 9. We plan to use gumstix
computers and therefore we are porting Plan 9 to this platform.

Introduction

Nowadays homes are full of devices begging to be interconnected and controlled. Big
screens, audio devices, computers and computer peripherals, switches, lights, sensors
for temperature and movement, alarms and possibly many others depending on the
tastes and economic possibilities of the owner. We envision a network interconnecting
these devices and a computer controlling them to make them an integral system which
gives the user a seamless experience.

We are working on a project to export these devices as filesystems using small
minicomputers. As part of this project we have started a port of Plan 9 to the gumstix (a
small arm pxa270 based minicomputer) and written a port of the Knx protocol stack to
Plan 9. This article describes the Knx usb driver we implemented and the development
of a Knx protocol stack under Plan 9, and its filesystem interface. The filesystem inter-
face is still under development.

Knx

Knx is the successor of EIB, European Installation Bus. Knx lets you connect a network of
sensors, actuators and small devices using a Knx bus, which defines various physical
mediums including a dedicated cable, and an insanely complicated protocol. Knx is an
standard supported by many companies and it is easy to find sensors and actuators
which have been reported to be quite robust and which consume very low power.

We have finished the Knx protocol development and we are now working on a good
interface to export the filesystem.

Most of the available devices to control Knx networks just export the network
through a gateway which lets you inject packets into the bus. This approach just trans-
late the difficulties of programming the Knx protocol adding another layer without
abstracting the problem itself.

We plan to export a synthetic filesystem in the Plan 9 tradition, which will make it
much more simple to control the devices. Also, the devices themselves can run many
different "applications", because they can be programmed in some metalanguage



combined with assembler. We want to control Knx devices as much as possible, but we
are not particularly concerned in programming the devices themselves, just with config-
uring and controlling them.

The devices can be programmed using the standard tools to program them with
the default binaries provided by the vendors as we have intelligence in the computer to
do the rest for us. Once programmed, the devices offer "objects", data types with a net-
work address which can be accessed through the devices or through their special object
address. We plan to have unique object addresses throughout the device and the net-
work if possible. This way, we can control each device and its properties from a com-
puter (the gumstix or the client to its file server).

Knx USB device

Knx defines a protocol for a USB [2] "coupler" to connect to the bus and act as a bridge
between the bus and a PC. The first thing we had to do was write a driver to control the
"coupler" itself.

The Knx USB devices provides us with two 64 bytes interrupt endpoints besides the
control endpoint, used for communicating with the device. The devices announces itself
as an HID [3] device and uses HID report headers and bodies format. The sequence low
nibble is used for multisequence packets, but we have not found a device for which we
needed to implement this.

The USB device has two parts, the Bus Access Server (Features) and (possibly) vari-
ous Emi Servers. Emi, external message interface is the name of the protocol as seen
outside of the bus. The Knx messages have two representations internal (Imi) and exter-
nal (Emi) and the Emi Servers translate between one and the other. The Emi Servers are
more than that, they filter and rewrite incoming packets depending on their layer they
are configured to understand and the address of the packet. Essentially they implement
all the protocol stack. There are two kind of packets which we send to the USB device in
the report body. Packets directed to the Bus Access Server, which decides which Emi
Server to turn on and how to configure it, and Emi packets which are intended to be sent
to the BUS.

Knx network protocol

Knx uses the ISO request, confirmation, indication structure for its communications.
Each time a request message is sent the sender receives a confirmation from his local
Emi Server and the receiver receives an indication. We have ignored confirmations as
they are generated locally (so they do not confirm anything) and when we are waiting for
a response we always set a timeout, in some cases defined by the standard and in many
other cases just a sensible limit. There are also retransmissions, so there is no point in
confirmations at all.

The Knx standard defines a the whole link/transport/network layer and modes for
each of this layers (and extra routing properties) for the Emi Server. We configured the
Emi Server in the (link layer, bus monitor), which is an essentially transparent mode so
that we could have complete control and see what was exactly happening with the
devices themselves. Even in this mode connected communications between remote
devices are not seen, which makes it difficult to program a real sniffer (other than con-
tinuously changing address). In any case, at least using the lowest possible mode lets
us do broadcast to program an address an in general program operations without hav-
ing to change modes continuously at the risk of creating a race condition and losing
packets. When the Emi Server is configured in an higher layer the packets arrive with the
upper part erased (zeros) or do not arrive at all.
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As a consequence of having the device configured at the lower layer, we see broad-
cast packets, and other packets we could ignore (confirmations), and we have to deal
ourselves with retransmissions and timeouts.

The Knx stack

We created two 1/O procs to take care of the blocking 1/0 of the USB endpoints.
The rest of the protocol stack is composed of threads all living in the same proc.
Usbwriter and usbreader are threads representing the 1/O procs and which serve
a channel each. These threads convert the raw USB packets int structs, taking care of the
HID report headers and the Knx transport headers. This interface permits the stack to
send Bus Access Feature packages whenever needed and inject them at low level while
at the same time not having race conditions with other layers of the stack.

Object
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proc \

Object
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usbwriter emiwriter
proc

L Local
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Figure 1: Architecture of the Knx driver.

Two other threads, emireader and emiwriter read from these channels,
decode and interpret the packets and send them to the appropriate thread. There is an
another thread representing each addressable Knx object plus three extra threads,
Management, Local and Remote. Management is the thread representing raw non-emi
packets, essentially Bus Access Features. Local injects emi packets in raw, normally
used to configure parts of the Emi Server. Remote is used for injecting raw Emi pack-
ages into the bus for things like configuring devices which have no address yet.

We have implemented stop and wait, taking care of retransmissions as part of the
sending functions, to make things simpler. At the moment, there is no need to optimize
throughput in any case.

Current state and Future work

The protocol stack as it is lets us already program addresses for the devices and control
all the devices we have. We can read the state of switches, control binary outputs and
read the state of temperature and light sensors. The Gumstix port is already working.
The only work left is some minor fixes and device drivers. The ethernet device driver is
working in Inferno and has to be ported to Plan 9.

We cannot (yet) discover the objects within a device we have not programmed our-
selves. We cannot program Knx devices, though this was never our goal it would be
nice to be able to write a binary image on them to program them. A filesystem to con-
trol the objects in under way. We plan to have a directory representing each of the
object threads, though we are working on the how many files it will contain and their
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ABSTRACT

Laptop computers do not fit well into the type of network that is built around one or
more file servers. The need to approach diskless operation, keeping data on the file server
is in direct conflict with the need for mobility of data. Here | report on work currently
underway to develop a filesystem for laptops that resolves this conflict by transparently
keeping copies on both the laptop and the file server.

Problem Statement

Experience has shown that there are many advantages to a file server separate from other
systems in a network. Typically a file server is backed up more regularly than an individual's
machine. The file server makes it easier to move to a new machine when the old one is
replaced. It also allows users to make use of any machine available and still see their data.
Finally, improvements to the hardware of a file server benefits all of the user community in a
way that's much easier and often more cost-effective than upgrading all user machines.

In recent years, however, there has been a significant shift in computing resources. Unlike in
the late '80s, most of us now use laptop computers at least part of the time, and many of
us use them almost exclusively. Last year (2008), marked the first time that sales of laptops
exceeded those of desk-top PCs. Unfortunately, there is a fundamental mismatch between
the laptop computer and the file server-centric network. The very nature of a mobile machine
demands that its persistent data be carried with it, where a file server is essentially data storage
separate from an individual’s machine.

Previous Solutions

More often than not, people who use laptops in an environment that includes a file server,
approach things from the perspective that the file server is essentially a backup device for their
laptop. Solutions created from this perspective generally make use of tar or rsync or something
similar. Periodically, the contents of the laptop are mirrored to the file server. Some users
take a full tar image each time, others use rsync or something similar to update the server.
Approaches such as tra[1] and unison|[2] improve on this synchronization by flagging a conflict
when a change is made on two different machines between synchronizations.

Some have designed distributed file systems with an eye to handling the needs of laptop users.
The most well-known is Coda[3]. One key element of these distributed systems is the push-like
behavior of the file server. When a file changes on the server, it sends out a notification to
any clients who are subscribed to that file so they can retrieve the updated version.

A Different Perspective

To a some degree the approach most people take with laptops is to treat the laptop as the
primary repository of data and the file server as a form of backup. If we reverse this perspective
and consider the file server primary and the laptop storage as a cache for times it’s disconnected,
we are led to a little different approach. In particular, when connected to the network, the
laptop behaves as a write though cache. All writes are immediately relayed to the file server.
Data read from the file server while connected are also stored on the laptop, making it available
when disconnected. During times when the laptop is disconnected, it behaves as a sort of write
back cache. Writes are recorded in a write log which is played back to the file server when the
laptop is again connected to the network. Laptops that move among multiple home networks



can be handled by multiple instances of the file system with one running in connected mode
and the others in disconnected mode when the laptop is on one of the home networks.

Within this perspective, there are several desirable characteristics we would like to have. First,
we would prefer not to have to modify the file server. Depending on the environment, we
might not have the privileges necessary to make changes. Furthermore, modifications to the
file server would have to be implemented for each server OS we connect to. Second, we want
the implementation to run in user space on the client. As with the file server, changes at the
system level require privileges we may not have and require different implementations for each
OS we might run on some laptop. Third, we want the user to be able to function the same
way whether the laptop is connected to the file server or not.

First Approach

When | first started to implement a file system based on this perspective, | began with Plan9
and implemented a simple file system that maintained a local copy while talking to a file server.
This server is called lapfs. The general approach was to use ordinary read(2) and write(2)
calls both to the local file system and to the file server. The precondition was that the file
server be mounted in the local name space. For example, suppose the file server is mounted
on /n/remote and we have directories, fscache and fs in the home directory. The lapfs server
is mounted to fs where it presents a namespace which is a copy of that rooted at /n/remote.
Fscache is where lapfs keeps its cache. In this first implementation, lapfs maintained its own
directory structures stored in regular files within fscache. When connected, on each open, lapfs
would query the file server to determine if the file's last modification time was newer than the
cached copy. If it was, or if there was no cached copy, lapfs would copy the file from the file
server to the cache before completing the open request. Reads were generally served from
the cache and writes went both to the cache and to the file server, though some experiments
waited until the file was closed before sending writes.

After the success of the initial experiment, it was clear that | needed to implement this design
in Linux as that is what my laptop at the time ran the vast majority of the time. This
reimplementation was done using fuse. Fuse was chosen so that flapfs (as that version was
called) could present POSIX semantics including symbolic links. This was important for some
potential users at the time who wanted flapfs to serve their entire home directory, and some
applications such as evolution were heavily dependent on symbolic links. The implementation
was used heavily by myself and experimentally by co-workers. For two to three years, my
laptops maintained caches of both my home file server and the file server at work. This
arrangement worked quite well. | no longer had to worry about whether | had copied the latest
version of a grading file to the laptop before going to work. When the time came to replace
a laptop, | didn’t have to retrieve any of my data from the old machine. | could simply install
flapfs and begin using the file servers, and the cache would begin building on the laptop.

A New Approach

Recently, | once again had to replace my laptop. Even before making sure that the version
of flapfs on my local file server was indeed the latest, | began to consider another, cleaner
approach. The key observation was that there is no reason why the laptop file system should
have to query the status of files on the file server all the time. When connected, all operations
can go directly to the file server with appropriate copying to the cache. A substantial portion
of the flapfs code had been devoted to modification time checking, and the associated copying
operations. This along with attempts to improve performance mitigating the large number
of stat(2) calls that were being made on directory searches was the most complicated part
of the code. If we no longer worry about the versions, we can work at the level of individual
operations, rather that at the level of files. In effect, the file system becomes a bidirectional
form of tee.

Because I've been more immersed in Inferno than Plan9 of late, | decided to implement this
new approach in Limbo. It was only after | began that | realized that this makes the file
system operable on any system that supports Inferno, not just those that have a port of fuse.
(However, there are a few open questions about using it on systems without P9Ps ability to
mount 9P /Styx servers.)

Rather than use ordinary file calls to interact with the file server and the cache, it made more
sense to establish channels to them and pass Styx messages back and forth. If the server (or
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even the cache) is over a network connection, then the channel is established with sys->dial(2).
If it is provided by a local server, sys->pipe(2) and sys->export(2) are used to establish the
channel. In most cases, the file server will be on a network connection and the cache will
be managed in the host OSs namespace by way of the #U server. In this implementation,
all T messages from the client are forwarded to the file server, and all file server R messages
are relayed back to the client. Client T messages, with the exception of Tread and Tstat,
are also passed to the cache. In the case of Tread and Tstat, lapfs waits for the Rread and
Rstat coming back from the file server. It then transforms them into corresponding Twrite
and Twstat messages that are passed on to the cache. Special treatment must be given to
Twalk. If both the file server and the cache produce successful results indicating that the full
path has been traversed, then we need do no more. However, if the cache doesn't have all of
that branch of the tree, then we must create it. From wherever the traversal stopped in the
cache to the point where the traversal stopped in the file server, we create directories in the
cache, except for the last path component where we might create either a directory or a file.
In the current implementation, the handling of walk is the most complex part of the code.

Status

As of the time of this writing, the Limbo version of lapfs, working at the message level, has
been implemented with the exception of three significant mechanisms. First, the disconnected
operation has not yet been implemented. For this, the messaging strategy changes to simply
relaying all client requests to the cache channel and all cache replies back to the client. This
mode of operation also requires the second missing mechanism, that of the write log. The
third major limitation is in the walk implementation. What is currently coded works as long as
the cache can make one step of the walk so that it returns an Rwalk message. If, however, it is
unable to traverse the first path component, then it returns an Rerror message. Path creation
in response to the Rerror message has not been implemented as of this time.

It should also be pointed out that the current implementation has been very lightly tested.
There is no doubt that significant bugs will be encountered and fixed as it is used on a regular
basis.

Finally, the current implementation is based on a simplifying assumption, namely that the
client will not have more than one T message in flight at a time. Lapfs serializes requests
in the sense that it will not take or process another T message until the previous R message
has been processed and returned. This avoided some fairly significant complications related to
keeping T messages around until we know we can drop them. They would be needed because
in transforming Rread to Twrite for the cache, some of the information in the original Tread
IS necessary.

Further Development

Obviously, the first step is the completion of the missing features. This must be done before it
can be used seriously enough to evaluate further. However, once it is working to a functional
level, it will be important to determine if it imposes a significant performance hinderance. This
is of concern, because the Linux (and FreeBSD) flapfs did create noticeable delays in many
circumstances. It also remains to be seen whether the serialization of requests is a significant
limitation. If it is, then the bullet will have to be bitten and a list of T messages will have to
be maintained and then referenced upon receipt of the corresponding R message.
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ABSTRACT

The Styx (9p) protocol has been well documented for use in various dis-
tributed systems [1, 2]. Demonstrations have proven that it works for
communication with embedded devices [3, 4, 7]. This paper presents an
implementation of 9p for the 16-bit dsPIC33 family of digital signal con-
trollers. It is used to collaborate multiple distributed nodes to achieve
stable aero-acoustic levitation of a sample by tuning sound pressure lev-
els and managing spin controlP.

1. Introduction

Aero-acoustic levitation (AAL) has been achieved in the past using analog systems with
purely manual controls [8, 9]. A newly designed AAL instrument is being built based
around a cluster of digital control boards. Each board includes a dsPIC33 embedded
controller and an FPGA to handle manual inputs paired with position feedback control
sensors used to drive a transducer and produce a stable acoustic field during experi-
ments where significant changes in temperature will be applied to a sample. Tempera-
ture changes modify the speed of sound and thus sound pressure levels at the desired
focal point. The distributed system of transducer control boards is used to calibrate and
adjust acoustic phase and amplitude along three axes to levitate and hold a sample in a
fixed position during solid to liquid-phase processing studies.

In addition to a manual control interface, this new system implements a fully digital con-
trolled interface available on an end user’s terminal. This newly designed system uses
9p for tuning core parameters on each node as well as communication with external ter-
minals. Exporting all the node sensor data to a single namespace on a user’s terminal
provides for clean logging and real-time analysis of state changes during an experi-
ment.

1.1. Aero-acoustic Levitation

Research into containerless liquid-phase processing of materials led to the invention of
aero-acoustic levitators [8]. The combination of gas jet (aero) and acoustic forces help
to stabilize the sample in a levitated (containerless) field such that rapid heating and
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cooling techniques can be applied. In this example it is principally used to conduct
experiments on samples that may be super heated to temperatures above 2700°K and
rapidly cooled without requiring a crucible or other physical container. Such experi-
ments test the viscosity and surface tension of a sample within a controlled environment
able accommodate key state changes important for theoretical and applied material sci-
ence studies.

1.2. Controller Boards

A distributed feedback control system is used in order to achieve aero-acoustic levita-
tion of samples during significant fluctuations in temperature. A gas jet counteracts
gravitational force and is controlled by the user or a program interfacing with an elec-
tronically controlled flow valve. Three acoustic axes, a pair of transducers each, are
used to provide levitation, stabilization, and spin control of a sample. Position detectors
are used perpendicular to each acoustic axis, three in total, to aid in stabilization and to
coordinate placement of a sample positioned at the intersection point of the gas flow
and the two lasers used in melting the sample. Each component is wired to one of eight
controller boards sharing a system bus with software running on the dsPIC33.

By tuning the acoustic phase of each axes to focus a standing wave above the gas jet
and near the ideal point for heating a sample, the deadline in which any system event
needs to respond becomes quite long. This leaves more than enough time for handling
9p messages at relatively regular intervals. By implementing 9p on the dsPIC33 embed-
ded controller there ends up being enough memory and free cycles to handle feedback
loop calculations without requiring further development like the Styx IP-Core on an
FPGA [7]; however, the option is still there for future research.

2. The River Styx

Each of the eight nodes in the AAL cluster resides in a single chassis with three commu-
nication channels: one exposed through a RS-232 interface, and two through the back-
plane. The first dsPIC33 code used a simple protocol requiring the use of a dumb termi-
nal connected to each board over the RS-232 interface. This configuration allowed for
single board initialization and verification, but made debugging inter-node communica-
tion over the 485 and SPI busses all the more difficult.

After reviewing file system interfaces for mobile resources [1, 5, 6], the case was made
to implement 9p not just for the serial communication from the host terminal to each
control node, but as the principal means of communication along the backplane con-
necting all the nodes in the cluster. This conceptual switch to responding through the
same protocol over each serial interface made the design and debugging of the system
all the more practical. A master node constructs a representation of the rest of the clus-
ter and exports its namespace using 9p over its RS-232 port. All other nodes are dedi-
cated to reporting the state of their various sensors and calculating responses based on
their dedicated feedback loops.

2.1. Embedded Server

Each node with a dsPIC33 serves a single-level namespace with two files: ctl, and status.
As with devices on Plan 9 and Inferno (e.g., uart(3)) the ctl file is used to write configu-
ration parameters to the board. The status file returns the measured state of all the
sensors accessible to the embedded controller: output voltage, output current, phase,
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mic amplitude, mic phase, temperature, etc.

Future implementations could expand the board to provide register and memory details
of the PIC, allowing for even greater debugging options as well as dynamic updates
beyond the simple scope of variables required for achieving levitation.

2.2. Embedded Client

A single master board is used as a gateway between all the controller nodes and a user’s
computer terminal. After board initialization, the master node scans the backplane for
all other connected boards, and uses 9p to set up a multilevel namespace representing
the system. All the non-master nodes are hot pluggable, so the master node’s exported
representation of the system will change as a node is disconnected or inserted. In turn,
the master board exports a namespace over its RS-232 serial interface, providing a syn-
thesized file system to the user’s application with a synopsis:

mount /dev/eial0 /n/aal

/n/aal/ctl
/n/aal/status
/n/aal/transtatus
/n/aal/[0-6]/ctl
/n/aal/[0-6]/status

The transtatus file contains the last polled state of all the transducer controller nodes,
numbered 0-5, eliminating the need to re-poll each node in order to respond to the
application’s request.

3. Experimental Control Application

The whole exercise of getting 9p on all of these embedded controllers is to provide a
consistent API for firmware development and expose a relatively simple interface for end
user application programmers to design and support experimental controls over various
sample materials in order to have precise position and spin control. There are multiple
built-in feedback loops that adjust the system’s parameters in real-time when enabled,
though there is programmatic control over these events as well. All changes get
reported back over timed reads by the master node (host application) of all other status
files. Doing so allows for an experimenter/programmer to create events that can be
programmed through scripts and run once the sample is levitated. A typical startup
example is:

# create namespace

bind —a ’#t’ /dev

mount —-bc /dev/eial /n/aal
linkflowmeter /dev/eial

mount —-a /net/flowmeter /n/aal
linkheatsource /dev/eia?2

mount —a /net/heatsource /n/aal

echo off > /n/aal/heatctl
echo off > /n/aal/flowctl

# acoustic calibration routines
echo findgq > /n/aal/ctl
echo pick > /n/aal/ctl
echo phase > /n/aal/ctl
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# prep for sample insertion
echo A .2 > /n/aal/ctl
echo 1000 > /n/aal/flowctl

# change phase on one axis

echo p+1 > /n/aal/[01]/ctl

# increase amplitude from top transducers
echo a+1 > /n/aal/[1,3,5]/ctl

# pseudo code to decrease amplitude over 30s
for(i in ‘{seq -1 0}){

echo a-1 > /n/aal/ctl

sleep 1

4. Conclusion

The use of 9p for inter-process communication in a distributed cluster provided a valu-
able interface for reading and writing sensor data on a dsPIC33 within certain deadline
constraints on each of the eight nodes in the cluster. It also allowed for application
development to use a simple file hierarchy to monitor and control a running system. Ini-
tial shell script prototypes were used on Plan 9 or Inferno depending on the developer’s
host system. Subsequent applications were written in Limbo and provided as reference
implementations for the use of 9p over the RS-232 interface.

5. References

[1] R. Pike and D. M. Ritchie. The styx architecture for distributed systems. Bell Labs Technical Journal,
4(2):146-152, June 1999.

[2] R.Sharma. Distributed Application Development with Inferno. In DAC ’99: Proceedings of the 36th
annual ACM/IEEE Design Automation Conference, pages 146-150, New York, NY, USA, 1999. ACM,

[3] C. Locke. Styx-on-a-brick. Vita Nuova Limited, York, England, June 2000.

[4]  B. Ellis. 9p for embedded devices. In Proceedings of the Third International Workshop on Plan 9,
pages 39-42, October 2008.

[5] P. Stanley-Marbell, Implementation of a distributed full-system simulation framework as a filesystem
server. In Proceedings of the First International Workshop on Plan 9, 2006.

[6] N. C. Audsley, R. Gao, and A. Patil. Towards a File System Interface for Mobile Resources in Net-
worked Embedded Systems. In Proceedings of the 11th IEEE International Conference on Emerging
Technologies and Factory Automation, pages 913-920, Prague, 20-22 Sept 2006.

[7] N. C. Audsley, R. Gao, and A. Patil. The Styx IP-Core For Ubiquitous Network Device Interoperability.
Perspectives in Pervasive Computing. Cambridge University Press, London, UK, October 2005.

[8] J.K. R.Weber, D. S. Hampton, D. R. Merkley, C. A. Rey, M. M. Zatarsk and P. C. Nordine. Aero-acoustic
levitation: A method for containerless liquid-phase processing at high temperatures. Review of
Scientific Instruments, 65(2):456-465, February 1994.

[9] J.K. R. Weber, J. J. Felten, B. Cho, and P. C. Nordine. Design and Performance of the aero-acoustic
Levitator. J. Jpn. Soc. Microgravity Appl., 13(1):27-35, 1996.

112



How to Make a Lumpy Random-Number Generator
Michael A. Covington

Institute for Artificial Intelligence
The University of Georgia
mc@uga.edu

ABSTRACT

Normally, random-number generators are designed to produce numbers with a
uniform distribution. The sum of uniform random variates has a bell-curve-
shaped distribution. Using bell curves like wavelets, individual uniform random
variables can be summed to produce arbitrary nonuniform distributions. The
result is a simple, customizable non-uniform random-number generating algo-
rithm that has been prototyped on Plan 9 and is equally suitable for other
computing environments, including very small embedded systems.

1. Problem definition

Normally, random-number generators produce uniformly distributed values. However, nonuni-
form random numbers are needed for a number of purposes. In simulation, one often needs
random numbers conforming exactly to the observed or theoretical distribution of an input
variable, in order to produce an authentic distribution of simulated output [1].

In other situations, the requirements are much less precise, but random numbers with a
preference for certain values or ranges are still desired. Examples include equalizing wear on
machinery by having a machine return to approximately but not exactly the same position
each time; introducing “dither” to avoid unwanted synchronism with external processes;
and correcting for nonuniformity in some process downstream from the random number
generator.

Traditionally, nonuniform distributions are generated by transforming the output of a uni-
form random-number generator, often using elaborate floating-point computations. In this
paper | outline an alternative that is especially suitable for the latter set of cases, where
quick computation is more important than hitting a specified distribution exactly.!

2. Approach

As Fig. 1 shows, the sum of n uniform random variables is an (n—1)th-degree polynomial
approximation to a normal distribution (bell curve) ([2], p. 22). For practical purposes, the
curve with n=3 is smooth enough.

Thus, one can generate a bell curve distribution by merely generating three random numbers
each time, adding them, and dividing by three.

Bell curves can be used like wavelets to synthesize more complex curves. For example, the
distribution in Fig. 2 was synthesized from a nonzero baseline mixed with three bell curves
by the code in Fig. 5.

'This research was done for CORAID, Inc. (www.coraid.com) while the author was on summer leave
from the Institute for Artificial Intelligence, University of Georgia (www.ai.uga.edu). The author thanks
Brantley Coile for posing the initial question from which this project arose.
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Figure 1: Histograms of the sum of n uniform random variables, from 10000 000 trials.
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Figure 2: Histogram of custom random number generator in Fig. 5.
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int genrand(int bmin, int bmax, int rmin, int rmax, int n) {
// Generalized random number generator;
// sum of n random variables (usually 3).
// Bell curve spans bmin<=x<bmax; then,
// values outside rmin<=x<rmax are rejected.
int i, u, sum;

do {
sum = 0;
for (i=0; i<n; i++) sum += bmin + (rand() % (bmax - bmin));
if (sum < 0) sum -= n-1; /* prevent pileup at 0 */

u = sum / n;
} while ( ! (rmin <= u && u < rmax) );
return u;

Figure 3: Generalized random number generator (sum of n uniform random variables).

Bell curves lack one property of wavelets [3]: they do not have an average value of zero, and
in fact they never dip below zero at all. Thus, adding another bell curve to a synthesized
function can only raise it, not lower it. For histograms, this is not a serious objection
because the height of the curve has only relative significance; the whole histogram can be
raised or lowered by generating more or fewer random numbers.

To understand that bell curves can be used like wavelets, consider some arbitrary distribution
f(x), some approximation to it g(x), and the difference g(z) — f(x). Either the difference
is a constant, in which case it can be filled by mixing in a uniform distribution, or else it
has one or more “humps.” Fill one of the humps with a bell curve sized to fit it, and you
have a better g(x) and a new g(x) — f(x) from which that hump is missing. Repeat as
desired until the fit is sufficiently close.

3. Implementation and testing

To put this idea to the test, the all-integer algorithm shown in Fig. 3 was coded in C and
executed under the Plan 9 operating system [4] on a 1.87-GHz Pentium processor. Each call
to genrand with n=3 took, on the average, less than 0.01 microsecond. The histograms in
all the illustrations were made with this function, by downloading its output to a PC and
graphing with Microsoft Excel.

The arguments of the function specify two ranges, the range that the bell curve should span
and the range of values acceptable as output. Thus, it is possible to compress or truncate
the histogram (Fig. 4). Naturally, if a substantial part of the bell curve is discarded, CPU
time is wasted, but this is still a quick way to generate a partial bell curve.

In the algorithm, if the sum of individual random variables is negative, it is decremented
by n—1 before performing the integer division by n. The reason is that without this step,
there are more ways to get 0 than any other number. For example, if n=3, then not only
do 2/3, 1/3, and 0 truncate to 0, so do —1/3 and —2/3. By shifting all negative results
farther negative by —2/3, we get the latter two to truncate to —1.

Fig. 5 shows how the synthesis of a distribution is done. This particular function has a 40%
chance of choosing the first call to genrand, a 30% chance of choosing the second, a 20%
chance of choosing the third, and a 10% chance of choosing the fourth. Thus, the bell
curves are mixed in the desired proportions.

One limitation inherent in this technique is that the random numbers need to fall within in
116



120000

-

100000

80000

60000

40000

20000

~

0 200 400 600 800 1000

35000 -

30000 -

25000 -

20000 =

15000

10000

5000

0 200 400 600 800 1000

Figure 4: Generated third-degree (n = 3) bell curve spans any specified range of values.
Bell need not fit within desired range; in that case, values outside range are generated and
rejected.
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int customrand(void) {

switch (rand()
case O:
case 1:
case 2:
case 3:
return
case 4:
case b5:
case 6:
return
case 7:
case 8:
return
default:
return

% 10) {

genrand (0,1000,0,1000,1) ;

genrand (-400,300,0,300,3);

genrand (600,900,600,900,3) ;

genrand (0,700,0,700,3);

// flat baseline

// large peak beyond left edge

// peak at 750

// very low, broad peak at 350

Figure 5: Sample code to interleave calls to genrand with different parameters, to combine
multiple bell curves into the single distribution shown in Fig. 2.

a range considerably smaller than that of the underlying built-in random number generator.
In Plan 9 C, rand produces integers from 0 to 32767 inclusive. When taken modulo 1000,
as in the examples, these are not quite uniform because (for example) there are 32 ways
to get 767 but only 31 ways to get 768. This nonuniformity is just visible in the topmost
curve in Fig. 1 but is usually negligible. If the modulus were 10000 or 20 000, it would be

serious.
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ABSTRACT

Understanding mail is a complex task. There are many standards
involved and many formats for headers, text, and attachments. On the
other hand, reading mail is simple: There is some text shown and one or
more files included as attachments. This paper describes a mail system
built by considering this. It stores mails in the file system as shown in a
mail reader, and attachments decoded as regular files. Thus making file
tools become mail handling programs.

Introduction
Long ago someone said regarding mail in Plan 9:

Seems our user base is growing larger than main memories of our imap
servers. Anyone have any ideas to keep systems from running out of
memory?

By that time Plan B was using the file server program (Plan 9’s fossil) also as a mail
server program. To do so, the only requirement was to keep mail undecoded and stored
in the file system as any other document would be. Today Nupas [1] can do the job,
although we keep on using the tools described here.

A mail including some text along with several PDF documents is not different from
a note made on a file along two PDF files. And that is the format used by the mail tools
described here.

The editor used (be it Acme or O/live) becomes a mail reader as soon as there is a
convenient way of producing mail listings. That can be done using grep, although it is
more convenient to use a program built for such task. A mouse click on a mail name (a
mail path) opens it for reading. The same happens to any attachment.

Furthermore, attachments using weird names may be renamed using mv, or per-
haps deleted using rm if they are of no interest. This program also becomes the ulti-
mate spam processing tool. As another benefit, Venti coalesces storage for multiple
copies of the same attachment, if present on different mails.

The same approach can be applied for sending mail. A program may collect files
written by the user into an agreed-upon directory. These files are simple text files in the
format used by Acme’s Mail. Only that now any editor is able to compose mail for deliv-
ery, without requiring an specific tool.

Considering that files in the file server are remotely available, mail becomes
remotely available as well. For small remote terminals (such as phones) upas/fs may be
instructed to use the new mailbox format, making IMAP available as well.



Overall, we think this approach is a good strategy for handling mail. The approach
consists mostly on avoiding the need for software to handle mail. If there is no software,
it will hardly run slow or out of memory.

Of course this is feasible only after having decoded mail messages, which means
that indeed we require software for the task. Its job is now to unpack a Plan 9 mailbox
into an already decoded set of files. This is described in the rest of the paper.

Mail box format

In Plan B, mails for users are parsed and decoded first, and then stored in a file hierar-
chy where these and other tools can be used to process them. The main tool is mail2fs,
which performs this processing. A mailbox is a directory, usually under
/mail/box/$user/, that contains one directory per month (e.g., 200603/ for
mails processed on March 2006). In these directories there is one directory per mes-
sage.

The convention is that message (directory) names starting with ““a.’ correspond
to archived messages not to be usually shown to the user. Names starting with “s.”
correspond to messages that seem to be spam (not usually shown either). Names start-
ing with ““d.” correspond to deleted messages not yet removed from the file system.
Any other rune can be used instead of a, s or d as a convenience (the meaning would
be up to the user). But for this optional prefix, messages use a serial message number
as their directory name.

The directory for a message contains at least two files: text and raw. The text
file has the mail headers and body already processed for reading. Its contents are simi-
lar to what Acme’s Mail would show for the message. The file raw has the original mail
headers without any processing, including the UNIX header line. This file is kept both for
debugging and also for obtaining message ids when replying to mails.

Any attachment in the mail is kept stored in a separate file (possibly with the file
name indicated in the MIME header) ready to be used. That is, decoded. When the
attachment is a mail, the message is stored in a subdirectory following the same con-
ventions stated above. For mails with attachments, the text file contains additional
text indicating the relative path names (from the mail’s directory) that can be used to
open the attachments. This is convenient to plumb(1) them while reading.

A Plan B mail box also contains two files: seq and digest. Messages are given
sequence numbers while they are added to the mail box. The file seq contains the
sequence number for the last message (or zero) and is DMEXCL to provide locking for
multiple programs using the mail box. The file digest contains digests for mails
added to the mailbox using mail2fs (but not for those added by hand using file tools).
When a message has a digest that was already seen in the past the message is silently
discarded as a duplicate.

Virtual mail folders may be created by storing text files with mail lists that contain
a mail description per line starting with the path for each mail. Copying the text shown
for some messages in a mail listing into another text file would “‘save’ such messages
into that file. The program mlist writes to standard output a clean listing for messages
with paths found in the standard input.

Other programs in the suite (most of them scripts) provide tools as a convenience
for reading mail on Acme and O/live.

Examples

Move all mails from the Plan 9 mailbox to the Plan B one, and create the later if it does
not exist:
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; mail2fs —c

List mails:
; mails
200910/1153/text nemo Re: FDP: Ambito
200910/1152/text enrique.sor FDP: Ambito
200910/1151/text paurea Re: [9fans] clarification on man 9p
200910/1150/text esoriano Re: como traducis contention?
200910/1149/text paurea Re: cémo traducis contention?

Plumb all PDF attachments from Glenda:

; for (£ in ‘{mails | grep Glenda | awk ’{print $13}’}IA/*.pdf)
plumb $£f

Create a virtual folder for messages in 9fans:

; mails | grep 9fans > 9fans

Of course we may use sort to present the list of mails in the order desired:

; mails | grep 'A[0-9]° | sort -t/ +0Onr | sort -t/ +1r | mlist

Most of the times there are convenience scripts to process mail and there is no need to
execute complex command lines. These scripts can be used within Acme or O/live and
do their job for a panel showing a single message, for messages named in the standard
input, or for messages given as argument.

For example, within O/live, executing ““!Mails’ at /mail/box/$user/msgs
produces an initial list of mails. This list can be refreshed by executing *“,<Mails’’ for
the panel containing the mail list. To read a mail we just click (button-3) on the mail
path. To remove mails from a virtual folder with cut them from the list.

To select mails according to text shown in the mail index we use the Sam com-
mand language. For example, ‘“,x/9fans/+—p’’ produces a mail index for mails com-
ing from 9fans. Should we want a mail folder for just those messages, we may simply
write the text shown in the panel to a text file. That file becomes a virtual mail box.

To archive a set of mails we send their index text as standard input to Arch. For
example, “.>Arch’ archives all mails selected in the panel. In the same way, Spam
flags mails as spam. In both cases, mv is the underlying tool; it renames the directories
to start with ““a.” and ““s.” respectively. (Mails lists all mail, archived or not, if given
the —a flag ).

Locate mails about mail2fs:

; looktags nemo msgs mail2fs

/mail /box/nemo/msgs/200801/a.9955/text

/mail/box/nemo/msgs/200801/a.9955/raw

/mail/box/nemo/msgs/200801/a.9937/text

/mail/box/nemo/msgs/200801/a.9937/raw
/mail/box/nemo/msgs/200801/a.9937/1.mai2fs.c

Here, looktags is a general purpose file search tool. Since mails are included in the file
server as regular files, they are also indexed by such tool.
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ABSTRACT

The Sheevaplug is a ‘“‘development kit”” based on the Marvell
Kirkwood system-on-chip. This chip has an ARM processor and con-
trollers for USB 2.0, gigabit ethernet and SDIO, among others. Inferno-
kirkwood* is a port of Inferno to the Sheevaplug, and hopefully in the
future to other devices based on this chip.

Introduction

Inferno—kirkwood is a port of Inferno to the Sheevaplug, a ‘““development kit’’ based on
the Marvell Kirkwood system-on-chip. Specifications of the Sheevaplug:

o ARM processor, 1.2 Ghz, with 16KB instruction and 16KB data caches, and 256KB
L2 cache.

. 512MB DDR2 RAM, 512MB NAND flash

. serial console and JTAG interface, over USB
. single 1Gbps ethernet port

. single USB 2.0 port

. SDIO slot, supporting up to SDHC cards

. RTC, GPIO, hardware crypto support (for DES, AES, MD5, SHAT), and hardware
XOR/DMA copy support.

The kirkwood chip has a second gigabit ethernet controller, a SATA controller, a PCI
Express interface, and controllers for SPI and 12S. However, these require connectors or
connector pins that are not present on the Sheevaplug. It is unfortunate that the Shee-
vaplug has no SATA connectors, storage must be delivered through USB. Other devices
(e.g. OpenRD) with those connectors have become available recently.

The Sheevaplug uses just below 3 watts when idle. It comes with Linux that runs from
flash, configures its network with DHCP and runs an ssh server with a default root pass-
word: getting started with the device is trivial.

The Inferno—kirkwood project was started after the Sheevaplug was mentioned on the
Inferno mailing list. The Sheevaplug is reasonably cheap, has enough hardware on it to
provide useful network services, and its hardware is documented. It looked like a nice
device to get experience writing device drivers and other low-level code. Without speci-
fications it would be highly unlikely | would be able to run Inferno on these devices. It
did turn out that some documents referenced from the main specification documentt
were not publicly available, but that has not hampered development yet.

* Inferno—kirkwood, http://code.google.com/p/inferno-kirkwood/

t Kirkwood function specification, http://www.marvell.com/files/products/
embedded_processors/kirkwood/FS_88F6180_9x_6281_OpenSource.pdf



The initial code to get a kernel booted, was written by me. Soon Salva Peiré got inter-
ested and started developing. Before his Sheevaplug arrived he developed remotely,
connecting to a machine that had console access to a Sheevaplug. One of the first
things he implemented was rebooting with AtAtr. Development has recently shifted to
other projects, but is expected to shift back soon.

Progress

A kernel can already be booted, with a working serial console, real-time clock and ether-
net controller. Some devices are partially supported, some do not have any support at
all.

The UART, for serial console, was the first device to be used. We probably do not yet set
all parameters for the serial console properly, instead relying on the boot loader u—boot
to initialize them.

Ethernet has better support, but not all hardware features are supported. For example
use of multiple queues for different types of network traffic each with its own packet
memory, or TCP/UDP checksum offloading. Perhaps these will not be implemented in
the future either though. Interrupt coalescing has already been implemented. Before
the processors dcache can be turned on, the ethernet driver must be modified to flush
the cache of the descriptors for packet memory.

The real time clock is read at start up and can be set as well. The RTC hardware also
has an alarm, but we do not support it.

The NAND flash is detected but cannot yet be accessed. Once it is supported, Inferno
can be booted from flash.

SD controller support is not complete either, but data can be read from SD cards. A
FAT32 partition has already been mounted, but the driver has stability problems (kernel
crashes). Writing to SD cards has not been tested but is not very different from reading.

A driver for the cryptography hardware has been written, but is not currently enabled. It
is not clear if all hardware support will be used in the future. The DES library used in
some parts of Inferno has a library interface incompatible with the hardware’s interface
to DES, so the changes required may be too intrusive and the gain too small. The hard-
ware supports DMA for cryptography operations, but that has some caveats and is not
the easiest way to use the crypto hardware.

The XOR controller copies memory using DMA and can optionally XOR data sources.
This is aimed at RAID implementations, but perhaps plain DMA memory copies can be
used by Inferno to lower CPU load.

GPIO signals have been set, but there is no generic driver that gives access to GPIO func-
tionality yet.

Finally, we have a driver for the efuse: small memory that can be written once and read
often.

History

Initial development went surprisingly quickly, considering how little experience with
low-level programming | had. | started with Inferno on OpenBSD, but any other Unix
that Inferno runs on would have worked just as well. The first goal was to create an
Inferno kernel and convince the Sheevaplug to load it. The Sheevaplug comes with the
u-boot boot loader, which supports BOOTP/DHCP and can fetch a kernel over tftp. The
kernel has to be in u-boot's uimage format, which turned out to be easy to create.
Before my Sheevaplug arrived, | had a mkuimage program that would take an Inferno
kernel and add a uimage header. Code from another Inferno ARM port was taken as a
starting point. That gave me skeleton code that could be compiled into a kernel. |
could turn that into an image that the Sheevaplug was willing to load and start executing
124



code from. Of course, the first kernel did nothing useful. Initially, | was not even sure
which starting point addresses | had to put in the uimage header and kernel image, so
whether u-boot was jumping to the right instructions. The best way to show a sign of
life seemed to be to write a character to the serial console. | now usually connect my
Sheevaplug through a power meter: power consumption shows me whether a broken
kernel is hanging, spinning or causes too many interrupts. After some trial and error,
trying a few kernel starting addresses and various UART configurations, the first charac-
ter appeared on the console! That was encouraging. The existing Inferno ARM code
was extremely helpful for getting to that point. After that, support for more controllers
has gradually been added.

Developing

Currently, development proceeds as follows: The standard Inferno build process is used
to create a kernel, in os/kirkwood/, which is then wrapped in a uimage header. The
resulting image is copied to a tftp server (the mkfile has a target to copy it to
/n/tftp). The Sheevaplug is rebooted, and the DHCP+tftp boot method fetches the
new kernel and starts it. U-boot can also boot from flash, and from the SD card, and
with the latest experimental version even from a USB mass storage device. Eventually
we want to boot from flash, and probably also from SD card.

Future

Obviously there is still a lot to do. The current inferno—kirkwood code is not yet ready
for normal use. This is exemplified by the lack of NAND flash support that would allow
writing to and booting and running from flash. Beside the obvious need for making the
code more stable, faster (enabling the dcache) and finishing existing drivers such as for
SD cards, new drivers need to be written. Apparently the USB controller is a standard
EHCI controller, so hopefully it will not be too hard to port Plan 9’s USB EHCI driver. The
SATA controller does not need support yet because the Sheevaplug does not have con-
nectors for it. Other devices using the kirkwood chip have become available now, and
they do have ESATA ports and the second gigabit ethernet port. They also have more
USB ports and one device has a PCl Express—-connected video card. Support could be
extended to these devices, but it is not currently planned.

When enough hardware is supported, the Sheevaplug can provide network services.
Inferno does not have programs for all common network services. Some of those | have
started on, e.g. a DHCP server (only a BOOTP server exists in Inferno), a simple anony-
mous FTP server, an NFS server, etc. Plans for other network services exist too, e.g. an
ssh 2 server. The goal is to replace an existing OpenBSD server with this more power-
efficient Sheevaplug running Inferno, providing similar network services. Somewhat
unfortunately (but unavoidably), implementing those has kept me from improving hard-
ware support.
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ABSTRACT

Ssh* is a client for the secure shell 2 protocol, written in Limbo for
Inferno. It also includes sftpfs, an sftp client that translates between sftp
and styx/9p messages. They currently support most of the popular key
exchange, authentication, encryption and digesting methods used by the
ssh protocol, but is not yet ready for daily use. No code for a server has
been written yet.

Introduction

The ssh project aims to bring secure shell 2 support to Inferno. It has both a secure
shell client for executing a shell or other commands on an ssh server and an sftp client
that gives access to files on the ssh server. No code for an ssh server or a program like
Plan 9’s sshnet(4) for using the server’s TCP stack has been written. At the time of writ-
ing, the basics work, i.e. logging in to an ssh server; basic sftp works too. Most of the
standard key exchange, authentication and encryption and digest methods are sup-
ported: Diffie—Hellman key exchange with rsa and dss host verification; password and
rsa and dsa public-key authentication; sha—1 and md5 for digests; and des—cbc, 3des—
cbc, aes (with 128, 192 or 256 bit keys, in cbc or ctr mode), arcfour (with 128 or 256 bit
keys) and idea (though untested because no one uses it). New factotum(4) support han-
dles authentication for the public-key methods. The two major limitations are:

° Channel windows are not updated. Both client and server maintain a window for
each communication channel on the ssh connection. The window indicates how
many bytes the other side is willing to consume, thus how many bytes can be writ-
ten without blocking. A large initial window is set by the current code, but the win-
dow is never updated during the connection. This works for most types of commu-
hication, but will block when all data from the initial window has been consumed.

° Session key renegotiation has not yet been implemented. During connection set
up, encryption and digest keys are exchanged between the client and server (and in
the process the client verifies the server’s host key). These are used to encrypt and
sign the protocol packets. The protocol specification dictates that keys be renego-
tiated after they have been used for some time or for a certain number of encryp-
tion operations. We currently never do that. Thus, when the server wants new
keys, the connection will break.

The protocol

Some details about the protocol. The protocol is specified in RFCs 4250-4254. Later
RFCs clarify, extend and/or deprecate functionality. The protocol is logically layered,
with a transport, user authentication and connection ‘layer’. These layers are more like
phases of the connection. Protocol messages are not actually layered or nested, all have

* Ssh, http://www.ueber.net/code/r/ssh



the same packet format with one set of simple encoding rules. Sftp is not part of the
secure shell protocol. It can be used outside of ssh too, though this is uncommon. It
can be implemented as a separate program that speaks the sftp protocol over a channel
by provided by an ssh connection. Sftp is only described in expired work in progress
RFC drafts The most recent versions of those drafts should be ignored: they are not
commonly implemented and only add complexities such as ACL schemes.

Ssh provides secure communication between two systems. The server accepts incoming
connections and plays the role of the server. The connection goes through various
stages: Key exchange (including host verification), user authentication and finally nor-
mal operation during which communication channels can be created and data sent and
received on those channels. An ssh client creates a channel and requests a remote ser-
vice, typically a login shell. The server starts this service and essentially connects the
channel’s communication descriptors to the shell’s standard input, output and error.
The client does a similar thing. The protocol allows many channels to be opened on a
single ssh connection. For example for multiple shells, or a shell and an sftp connec-
tion.

The sftp service can be requested on a channel, with the same mechanism used to start
a shell. The sftp service reads sftp protocol requests from the channel and writes the
sftp responses to the channel. Sftp maps surprisingly directly to styx, but (as most such
protocols) cannot do all of a wstat operation atomically, needing multiple sftp requests.
Sftpfs does not wait for an sftp response before sending the next sftp request, so has
some accounting to do (e.g. for flushes, and the two-stage wstat).

Additional services have been specified: X11 forwarding, authentication agent forward-
ing. No support for those is planned.

Future work

The two missing bits of important functionality have been explained earlier. Many more
small ones exist and it is likely that large chunks of code need to be rewritten. The
design might need to change, as a consequence of how it was developed: | wanted to
get some useful packets exchanged with a server as soon as possible, so | dialed an ssh
server (running OpenSSH) and saw it sent a banner. Finding how to respond to that ban-
ner was easy, ssh packets followed soon. By the time encryption was needed, generic
packet parsing and packing code was usable. In the mean time | had realised | could
enable debugging output (including protocol message printing and diagnostics) on the
OpenSSH server. It would tell me if packets were malformed, unexpected, etc. So the
OpenSSH server has been a great help during development. This approach resulted in
quick initial results, and the protocol was learned along the way. It did not result in very
clean code though, but that will be fixed.

Both the ssh client and sftp client need lots of polishing. At some point a terminal emu-
lator for Inferno would be useful, to be able to use curses programs on unix systems.

Other missing features:

. Ssh version 1 is not supported. It is being phased out on the internet, few people
still use it and every new ssh server deployment supports ssh version 2 and often
refuses to speak ssh version 1 because it is less secure. Support for version 1 will
probably not be implemented.

. The reasonably popular blowfish encryption algorithm is not supported yet. It
seems there are various versions of blowfish in use, with different endianness for
data and/or keys. Newer key exchange methods that use SHA-2 are also not sup-
ported: Inferno does not yet have a SHA-2 library. Both should be fixed eventu-
ally, though there is no hurry.

. The ssh protocol supports compression of the data packets with the deflate algo-
rithm. Ssh will not support it any time soon because Inferno’s deflate library does
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not support flushing the compressed buffer on command, which is required.

There is currently no ssh server, or sshnet-like program. Both are useful and may
be implemented in the future.

Host key fingerprints, used to verify that the host is who it claims it is, are stored
in a file, $home/1ib/sshkeys. Since this is security sensitive information, use
and management of these keys should perhaps be handled by a factotum-like pro-
gram.

Inferno’s factotum currently always prompts the user for credentials when a key
was requested but none found. Ssh tries rsa and dss keys first, then normal pass-
words. In the quite common case of wanting to authenticate by password, this
results in two unwanted factotum key requests.
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ABSTRACT

In Plan9 most resources are provided as files, including regular on
disk stored files. When the set of files grow, it is important to be able to
quickly locate files based on their contents. This paper describes the set
of tools documented in tags(1), which provides file indexing and content
based searching for Plan 9, using a file system to provide the search
interface.

1. Introduction

It is common today in most systems to be able to search files based on their content.
MacOSX has the Spotlight tool, Google supplies a file indexing and searching tool for
various systems including Windows and Linux, and UNIX has since long ago tools like
whereis and Glimpse [2] that permit searching files by name or by content. There are
many other content-based tools. See [4] for a survey or [3] for tools used for string
matching.

The native version for Plan 9 of such tool was missing, although APE can be used to
port others from other systems. In fact, Seft [1], another search tool, is an APE port
already available at sources. We describe here our second attempt at providing content
based file searching for Plan 9, after early experiments in Plan B with adb(1), a simple
tag database.

Content based searching requires solving two problems: (1) indexing file contents
and (2) searching the indexes to execute queries. How both things are done depends on
the type of searches to be supported. The tools described here provide only exact word
matching. Approximate text matching would require different techniques [3] and has
not been considered yet.

For exact word queries, it is important to be able to extract the words of interest
(probably all) from a file. The appropriate way of doing this is specific for each type of
file. Therefore, the indexer has to be modular and permit the addition of specific word
extractors for different file types.

Regarding searching, there is a compromise between maintaining the database in
memory, leading to fast searches and to high memory consumption, and maintaining
most of it on disk, which leads to slower searches but minimizes memory consumption.

Another issue is that on Plan 9, as of today, it is not uncommon for a user to have
multiple terminals. At the very least, it is very common (by design) to have multiple ter-
minals sharing a central file server and several CPU servers. This may be exploited to
use (otherwise idle) machines to help in file searching, while keeping most of the termi-
nal resources available for other uses.



It is also important for the indexer to support quick updates to the index, or
changes to the file system would not be able to get incorporated quickly to the data-
base, and users would miss most recent changes, as made to the file system. Consider-
ing that many searches refer to things just made, this is an issue.

In Plan 9 users rearrange their namespaces so that they incorporate possibly many
file trees, from different servers. However, an indexing tool must keep file paths in a
consistent way for all name spaces. Also, it is important to run the indexer utility close
to the file server, to reduce I/O latency. As a result, the search database is best associ-
ated to a particular file tree (at a single file server), instead of being associated to a
namespace. In that way the database used determines the file tree where the files
reside, and paths are not ambiguous anymore (because they are not a function of the
client’s name space).

2. Data structures

The set of tools described in tags(1) builds upon two data structures:
1 A trie that maps words to file qgids.

2 A hash table that maps qids to file names.

We keep the index and file names apart because Qids are more compact. Qids are used
as values in the trie, instead of using strings. This permits the Trie to be more compact,
which is important because the memory occupied by the database is significant. The
more compact it is, the better. This can be done because the database refers to a file
tree at a particular server, to keep paths meaningful as said before.

The trie is stored in a single file, e.g., /1ib/sys.trie.db, and is fully read on
main memory by tools that use it. The hash table is kept at a separate file, e.qg.,
/1lib/sys.hash.db, and is also entirely read onto main memory by the tool sup-
porting it.

All words used to lookup files are kept in the trie. This means all words contained
in text files, and all words extracted from other file types. As an aid, each file is consid-
ered to contain the path elements present on its name. This allows, for example, looking
for sys and src to focus a search on system source files.

Each node in the trie represents a prefix (or a full word). The root node corre-
sponds to the empty word. A trie node is described by the following structure:

typedef struct Trie Trie;
typedef struct Tent Tent;

struct Tent {

Rune T;
Trie* t;
};
struct Trie {
Tent* ents; // ents[i].r are runes for children
int nents; // ents[i].t are children
int aents; // # of ents allocated
uvlong* vals; // values for this prefix
int nvals; // # of values in use
ulong* svals; // small values (fit in a long)
int nsvals; // # of small values in use

};

A node t maintains pointers (in t—>ents[i].t) to child nodes that represent longer
words sharing the prefix represented by t. Each link to a child node is labeled by
t—>ents[i].r, the rune that has to be added to the prefix represented by t to
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obtain the prefix represented by the child.

For example, the prefix a representing either the word a or all the words starting
with a would be represented by the child t—>ents[i] .t of the root node, provided
that t—>ents[i].r in the root node contains the rune a. Figure 1 depicts an exam-
ple trie keeping the words (and their prefixes) hi, hello and so.

ents[l.r |h|s

ents[].t
ents[l.r |e i/ \ ents[l.r
ents[].t ents[].t
ents[l.r /
ents[].t

ents[].r
ents[].t
ents[.r E /

ents[].t

vals]] E

Fig. 1: A trie with three words: hi, hello, and so.

The trie is used to map words to Qids. Each node t that (besides being a prefix) repre-
sents a valid word (a key for a set of files) contains in t—>vals an array of Qids. For
example, in the figure, the two nodes holding the o rune would point to further trie
nodes, used just to contain the Qids for files tagged with hello and so. In the same
way, the entry for i in the left child of the root node would point to another trie node
used just to contain the Qids for files tagged with hi. All nodes in the figure are simi-
lar, but we do not show empty arrays, for clarity.

Both ents and vals arrays are grown dynamically, as more space is needed. For
ents, nents records the number of entries used and aents records the number of
allocated entries (because in the future we might allow to delete entries in this array).
For vals we grow the array in chunks of Incr nodes (a constant in the program) and
there is no need to keep avals. The array t—>svals is an optimization, discussed
later.

Note that this implementation leads to a flat trie, whose depth is only as long as
the longest word. Other implementations would use inner trees (mixed within the trie)
to keep children conceptually contained at a single node in the trie.

We thought that it was best to keep the entire database in memory, to permit fast
searching. That is considering that memory is cheap and that we may also be able to use
the memory of a shared machine to keep the database there. Nevertheless, the database
must be kept as compact as feasible while on memory to avoid consuming all the mem-
ory available. Therefore, using a single array to keep all the pointers to the children

/ vals(] E vals[] E
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(and all the values) seemed a sensible thing to do. It permits a compact representation.

Both arrays are kept sorted, which means that searches on them are still logarith-
mic. Additions to the trie are not that frequent and they do not require fast response
times, compared to searches (which are interactive).

Many Qids fit in a 1ong value, and the trie stores them in svals instead of doing
it in vals. That way we use half the size for such Qids, at the expense of maintaining
two more words at each node in the Trie, to maintain the array. We tried both with and
without this optimization and the difference is about 50 Mbytes of main memory for our
system database. In the future, if many Qids use the high long of their path, the two
extra words may turn into a penalty. Searching time is not affected by this optimization.

The data structure mapping Qids to paths is a simple hash table. There is not
much to say about it, other than showing the structure itself:

typedef struct Ent Ent;

struct Ent {

uvlong qid;

char* path;

Ent* next; // in hash
+;

Ent* hash[Nhash];

Searching for lines matching the given query relies on a double search. First, the
inverted index implemented by the trie reports the files relevant to the query. Second,
grep(1) is used to search such files and show relevant lines.

One point of interest in both data structures is that neither one supports removal
of entries. Removing qids from the trie would require iteration over all the nodes in the
trie, which is utterly expensive. Instead, the tool searching the hash table checks that
files being looked up still exist, before printing their paths. If they are removed they are
simply discarded.

When a file no longer contains a tag, it may still be indexed by the tag. In any case,
the tag is related to the file (because it did contain it). The search interface relies on
grep(1) to show lines that match the query on the files retrieved from the database. If a
tag is no longer in a file, no lines will be shown for such tag. This makes the problem of
old tags mostly irrelevant.

From time to time, (e.g., once per month), the database may be regenerated to
clean it up. That is the price for avoiding the time to remove entries while re-indexing
files.

3. Tools

The software for indexing and searching files is split into different tools, as described in
mktags(1). This is their synopsis:

mktags [ —-d ] dbpath file...

[ DB= dbpath ] looktags [ -n ] tag...
tagfiles [ —-d ] triepath file...

rdtrie triepath [ tag... ]

qghash [ -dv ] hashpath [ gid... ]

ghash [ —-dv ] —a hashpath [ gid path... ]

ghash [ —-dv ] —c hashpath file...
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tagfs [ —abcD ] [ —=s srv] [ -m mnt] triepath

The first two programs are Rc scripts providing the primary user interface. The other
programs provide the actual software for indexing and searching.

Mktags creates a database named dbpath that maps from tags (words) to file
names. Only given files are indexed (including subdirectories as well). Any word in the
path name for a file, and any word contained in the file (for most files) becomes a valid
search tag for the file. The resulting database is made of two files: a trie and a hash
table. The name of the trie has the suffix .trie.db and the name of the hash has the
suffix .hash.db. The path to the database files without their suffix is considered the
name of the database.

By convention, there is a system wide data base at /lib/sys (that is,
/1lib/sys.trie.db and /lib/sys.hash.db ) and a per-user data base at
$home/1ib/$user (that is, $home/1ib/$user.trie.db and
$home/1ib/$user.hash.db).

Looktags searches the system and user databases for files that match the query
specified by its arguments. By default, only file names are printed. Flag —n instructs
looktags to run grep(1) to print some of the matching lines.

A query is made of lists of tags separated by the ‘“:’’ character, each as a distinct
argument. A file matches the query if it is associated to (contains) all the tags in one of
the lists. For example,

looktags a b c : d e

would search for files either matching all of a, b, and ¢ or matching all of d and e.

Looktags can be instructed to use a different database by defining the DB environ-
ment variable to contain a list of names for the databases to be used (without any file
name suffixes).

Qhash maintains a file name hash table in the database. This data structure is used
to translate Qids into file names.

The first invocation syntax (without using flags —a or —c) can be used to retrieve
path names for the given gids in the command line. This is used by looktags to obtain
paths for matching files. Under flag —a the program ghash adds the following argu-
ment pairs (each with a gid and path) to the hash file. Under flag —c ghash retrieves
Qids and (absolute) path names for file(s) mentioned as arguments (recurring for direc-
tories), and adds them to the database. This is used by mktags to create/update the
hash file in the data base.

In memory databases

Rdtrie can be used to inspect and query the Trie in the database. The Trie data structure
keeps all the known tags in a trie, maintaining a list of Qids for each tag.

Without any tag argument in the command line, rdtrie reads and prints the entire
Trie file, trie. Otherwise, rdtrie reads trie and then interprets any following arguments
as a query. Qids matching the query are printed in the standard output. Looktags relies
on this program to execute its query.

To speed up searches, the trie part of the database can be kept in memory using
tagfs. For example, if the database is named /a/b/dbname, looktags searches first for a
file named /srv/dbname . tagfs (to reach a server holding an in-memory version of
the trie part of the database), and uses it when available. Otherwise, looktags looks for
the host identified by $search in the ndb(6) database. Should it be found, looktags
imports its /srv directory to look for /srv/dbname.tagfs on it. This is used to share
an in-memory database among several machines sharing a network. Only as a last
resort would looktags read the database by itself to execute the query.
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Tagfs can also be used to update a Trie, besides being an alternative to rdtrie to
perform searches. The directory served by tagfs contains a ctl file that can be read to
gather statistics about the Trie and can be written to modify the trie. A write of the
string sync writes the in-memory database back to its file. A write of the form

tag gid tag...
adds tag to gid in the trie (but does not update the on-disk database).

A query can be made by creating a file, writing the query into it (being careful to
separate different tags and : characters with white space), and then reading from the
same file the list of gids that match the query. The query file is removed as soon as it is
closed after having read from it.

Modularity

Tagfiles tags every file mentioned as an argument (recurring for directories) using the
Trie stored in the given trie argument. Mktags relies on this program.

For each file indexed, tagfiles uses every word in its path name as a valid tag to
search for the file. Also, tagfiles looks at the file name suffix and uses file(1) to deter-
mine the type of file and pick a particular indexing method. For text files, tagfiles reads
entire file contents and associates each word contained in the file as a tag to search for
the file. For other types of file, tagfiles tries to execute external programs to extract the
list of tags for each file. Should the appropriate external program not exist, tagfiles
would still try to index the file as text when appropriate.

The following programs may be executed by tagfiles to obtain tags for files. They
are expected to write tags for the file given as an argument, one per line:

. tagc to tag C source.

. taglimbo to tag Limbo source.

. taghtml to tag HTML files.

. tagman to tag manual pages

o tagrc to tag Rc scripts

. tagtroff to tag roff source.

. tagdoc to tag Microsoft Office documents, including rich text format.
. tagpdf to tag Adobe PDF files.

. tageps to tag Adobe EPS files.

. tagps to tag PostScript files.

4. Examples of use
Create the per-user and the system database:

; mktags $home/lib/$user $home /mail/box/$user/msgs
; mktags /lib/sys /cfg /rc /sys

Look for files mentioning either list append or queue append, then repeat que query but
using an alternate database kept at /lib/other.trie.db and
/1lib/other.hash.db:

; looktags 1list append : queue append
; DB=/1lib/other looktags list append : queue append
Add (or update!) tags for files under /usr/prof to the personal database:

; tagfiles $home/lib/$user.trie.db /usr/prof
; ghash —-c $home/lib/$user.hash.db /usr/prof
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Place the system database in memory so that looktags can be faster, and add the tag
yoyoba to file with qid 8345f

; tagfs /lib/sys.trie.db
; echo tag 8345f yoyoba >/mnt/tags/ctl
; echo sync >/mnt/tags/ctl

Make the system database at whale.lsub.org available to other hosts: First,
edit /1lib/ndb/local to contain search=whale.lsub.org for the network
entry. Second, at whale:

whale% tagfs /lib/sys.trie.db
whale% chmod a+rw /srv/sys.tagfs

Now from other hosts, looktags may use Whale’s in—-memory database.

5. Heuristics

The most important heuristic is the one used by tagtext in tagfiles to determine which
pieces of text are words. In particular, words of less than three characters are ignored.
Also, pieces of non-blank text of more than 50 characters are considered as non-text
(see for example encoded attachments in mails). The remaining text is parsed to locate
alphanumeric words to be used as tags.

6. Performance

We have not really made any performance measurements for the tool. In part because it
is good enough to fit our needs. Nevertheless, we include some concrete measures here
to give a glimpse of its behavior. The implementation contains 1876 lines of C code (not
counting library functions used).

An important measure is the size for the database. This is what ps says for our sys-
tem database and that for the author:

; rx whale ps | grep tagfs
elf 383 0:27 0:13 148736K Pread tagfs
nemo 915 55:36 13:42 236808K Pread tagfs

The personal database includes all mail besides indexing more than 300 Mbytes of
(mostly text) files.

A search for files including tags and doc as tags takes 3.58 seconds (real time), and
reports a total of 31 files in the system:

; time looktags tags doc
/mail/box/nemo/msgs/200102/a.997/text
/usr/nemo/doc/os/9intro/chl10.ms
/usr/nemo/doc/os/9intro/index
/sys/src/cmd/tags/tagfiles.c

0.28u 0.06s 3.58r looktags tags doc

Using flag —n to ask for a listing of matching lines in these files (besides searching for
them) takes 3.95 seconds of real time.

Adding nemo as another required tag makes the request take 1.66 seconds of real time.

All these measures are not implying anything regarding performance. They are not
controlled experiments, but it can be seen that the set of tools behaves well enough for
actual use.

137



References
1. O. Kretser and A. Moffat, SEFT: a search engine for text, Software—Practice & Expe-
rience, 2004.

2. U. Manber and S. Wu, GLIMPSE: A tool to search through entire file systems, USENIX
Winter Technical Conference, 1994.

3. G. Navarro, A guided tour to approximate string matching, ACM Computing Sur-
veys 33,1 (2001), 31-88.

J. Zobel and A. Moffat, Inverted files for text search engines, ACM Computing Sur-
veys, 2006.

>

138



Torrent

Mechiel Lukkien

mechiel@xs4all.nl

ABSTRACT

The torrent* project contains a BitTorrent program and tools for cre-
ating .torrent files and ‘‘tracking’ a torrent. It is written in Limbo, for
Inferno. Torrent/peer connects to many peers and exchanges data
blocks with them. It serves a styx/9p interface from which progress can
be read and its behaviour influenced. This interface is used by
wm/torrent, a Tk program that visualizes progress and allows
stopping/starting and setting bandwidth limits.

Introduction

This report briefly introduces the BitTorrent protocolt, explains the functionality and
styx interface of torrent/peer, the user interface provided by wm/torrent, implementa-
tion details, and concludes with a discussion and future work.

BitTorrent

BitTorrent is a popular peer to peer protocol for file exchange over the internet. A
.torrent file references a tracker, SHA-1 hashes of pieces of the data that are
exchanged, and file names belonging to the data. An info hash (SHA-1 again) can be
derived from this information and is the unique identifier of the torrent file. Peers use
the info hash to determine whether they are talking to a peer that exchanges the same
data. The tracker helps peers find each other, returning lists of peers interested in the
same data. The tracker is the only centralized component used during data exchange,
though decentralized trackers also exist nowadays. The SHA-1 hashes in the torrent file
allow verification of the received data. The file names in the torrent have no role in the
protocol: multiple files are treated as a sequential stream of bytes during data
exchange. All pieces (except the last) are of the same fixed size, typically between 64KB
and a few MB. Smaller blocks of a piece, of typically 16kb, are exchanged at a time.
Once all blocks for a piece have been received, the piece is verified and from then on
exchanged with other peers. The torrent file is encoded in the “bee’” format, a simple
BitTorrent-specific format that can encode lists, dictionaries, integers and (octet)
strings.

An implementation connects to the tracker periodically to fetch a list of peers, and then
dials those peers (unless enough peers are already connected). It also listens for incom-
ing connections from other peers. It keeps track of the pieces each peer has, and keeps
all peers informed of all the pieces it has itself. A connection to a peer has two bits of
state on both the local side of the connection and the remote side: whether each side is
interested (i.e. wants a piece the other side has), and whether it has choked the

* Torrent, http://www.ueber.net/code/r/torrent

t The BitTorrent Protocol Specification, http://www.bittorrent.org/beps/bep_0003.html



connection (i.e. is not willing to send blocks). If the local peer is interested in the
remote peer, and the remote peer has not choked the local peer, requests for blocks are
sent to the remote which the remote peer answers with blocks.

To keep TCP working reasonably (with slow-start, back-off, etc.), only a limited number
of peers are selected for sending data to, i.e. unchoked. The set of peers to send data
to is evaluated periodically. The best performing peers are (kept) unchoked, all others
are choked. Performance is measured by the peer’s contributed bandwidth. A random
peer is unchoked once in a while, hoping it will appreciate our bandwidth and recipro-
cate. This simple mechanism finds good peers to exchange data with.

The pool of connected peers is kept healthy too. In torrents with many peers (large
“swarms’’), replacing existing connections with new peers ensures good piece distribu-
tion and gives new peers a chance to get data.

These are all standard BitTorrent mechanisms. There are many details an implementa-
tion has to care of. For example, it has to defend against freeloading peers, or peers
that send blocks with wrong data (whether deliberate or not).

Torrent/peer

Over the years, various extensions have been added to the protocol. Not all have been
implemented. The feature that makes peer different from most implementations (but
not btfs!) is its styx interface. This interface is probably not generally useful, but it
does give a nice separation of the protocol details and controlling the process and show-
ing its progress. Perhaps a web interface will be implemented in the future though.

The following example illustrates the current styx interface. Be warned that it will likely
change.

% mount {torrent/peer glenda.torrent} /mnt/torrent
% cd /mnt/torrent

% 1ls -1

——rw—rw—rw— M 4 torrent torrent 0 Jan 01 1970 ctl
—r—Tr—Tr— M 4 torrent torrent 0 Jan 01 1970 files
——r—Tr——Tr— M 4 torrent torrent 0 Jan 01 1970 info
—Tr—Tr—1r— M 4 torrent torrent 0 Jan 01 1970 peerevents
—Tr—Tr—Tr— M 4 torrent torrent 0 Jan 01 1970 peers
——r—r—Tr— M 4 torrent torrent 0 Jan 01 1970 peersbad
——r——r——Tr— M 4 torrent torrent 0 Jan 01 1970 peerstracker
——r——Tr——Tr— M 4 torrent torrent 0 Jan 01 1970 progress
——Tr——Tr——r— M 4 torrent torrent 0 Jan 01 1970 state

% cat info

fs O

torrentpath glenda.torrent

infohash f52fe0191737elc3e6e86f0081fa52d182e12a70
announce http://localhost/announce

piecelen 65536

piececount 10

length 654030

% cat files

spaceglenda300.jpg spaceglenda300.jpg 654030 0 9
% echo start >ctl

%

Commands can be written to the ctl file, e.g. to start/stop data exchange, or to set
bandwidth limits. A read on ctl returns the values of configurable parameters. Info
returns properties from the torrent file. State returns most of the progress (band-
width rates and totals of the transfer) and e.g. the number of connected peers. Files
lists the files described by the torrent file. Each line consists of a path (sanitized by
default, so no spaces and other shell and text-selection unfriendly characters), total size
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in bytes, and first and last piece that has bytes for this file. Peers, peersbad and
peerstracker give information about the connected peers, a list of misbehaving
peers, and addresses of peers that are known but not necessarily connected.
Peerevents returns events about peers, one line per event. For example for newly
connected peers, or a change of interestedness or chokedness, or when peers say they
completed a piece. Progress returns events about progress peer itself is making, e.g.
when a new piece is complete, or when checking the hash for a piece failed.

Wm/torrent

The styx interface exported by peer is used by wm/torrent to keep track of progress
and allow setting of controls. Torrent shows information such as percentage of pieces
completed, current upload and download rates, total number of bytes uploaded, down-
loaded and remaining, the number of connected peers. Two ‘“‘piece bars’’ visually indi-
cate which pieces have been downloaded and to what extend pieces are available at
other peers. Another view shows information per peer, including their progress, net-
work address, software version identifier, and upload/download rates and totals. A
third view shows a list of ““faulty’’ peers, those that did something wrong such as send-
ing bogus BitTorrent messages or invalid data.

Torrent/track, torrent/create and torrent/verify

Track is a very simplistic tracker. It can be configured to serve a preset list of info
hashes, or any info hash that comes along. It runs as an scgi program.

Create creates a .torrent file for a list of files that are to be exchanged. The tracker
must be specified as well. Create logically divides the files into pieces and calculates
their SHA-1 hashes for inclusion in the torrent file.

Verify calculates the SHA-1 hashes of files specified in a torrent file and compares them
with the hashes in the torrent file. It prints which pieces are complete.

Implementation
The obligatory line counts:

2824 9173 70618 ./appl/cmd/torrent/peer.b
139 444 3022 ./appl/cmd/torrent/create.b
100 256 1922 ./appl/cmd/torrent/verify.b
719 2317 16644 ./appl/cmd/torrent/track.b
214 583 3432 ./appl/lib/bitarray.b

1007 3080 20351 ./appl/lib/bittorrentpeer.b
346 1316 8852 ./appl/lib/bittorrentpeer.m

1076 3889 25111 ./appl/lib/bittorrent.b

1305 4267 30196 ./appl/wm/torrent.b

39 166 1002 ./module/bitarray.m
132 531 3443 ./module/bittorrent.m

7901 26022 184593 total

Future work

The BitTorrent protocol has only ten very simple protocol messages. The file format of
the torrent files is simple too, and the responses from the tracker are in the same for-
mat. Most of the work consists of managing all the connections, making sure all peers
that are willing to transfer data receive requests, in a pipelined fashion. For each peer
we have to keep track of the pieces they have, which of those we still want, which of
those have not yet requested, etc. Preventing abuse plays an important role too. Thus,
the most complicated part is all the accounting, keeping all the information in a consis-
tent state and quickly accessible (at low cpu cost).
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Decisions are made continuously: which piece to request next, which peers to unchoke.
These decisions can be made with “smart’ algorithms, e.g. based on previous actions
by the peer. However, that greatly complicates the accounting and is susceptible to
abuse. A simple and robust approach is to pick one of the options at random. It is
cheap to execute, requires little bookkeeping and typically less prone to abuse.

There are many things that need improvement, listing them here would be too much
(and too detailed). Some of the immediate or larger items on the list:

Quality of peers should be taken into account more when requesting blocks. This
provides robustness against malicious peers that send wrong data. A mechanism
to divide clients by whether they have delivered a full piece, delivered blocks of a
completed piece, are of unknown quality, or have mistreated us in the past has
been implemented partially.

Torrent/peer should handle multiple torrents at once. Currently multiple peer’s
and wm/torrent’s have to be started. This is not necessarily bad. However, trans-
ferring multiple torrents in a single peer allows for better traffic and connection
optimisation, i.e. getting more bandwidth in return for given bandwidth. For exam-
ple the n*m best peers over all m torrents can be unchoked, instead of the best n
for each torrent.

UDP trackers, as opposed to the default HTTP over TCP trackers, might be useful,
though mostly to lower the load on trackers.

Http seeding extensions, for retrieving pieces from a web server when no peers
with those pieces are available. It is not clear how commonly this is used though.

““Magnet URIs”’ and the BitTorrent extensions protocol message could be imple-
mented. It allows exchange of torrent files among peers, given en info hash. This
makes BitTorrent more decentralized.

Pieces are currently always requested in random order. Rarest-first piece selection
could be implemented, to ensure better piece availability. It requires more
accounting though, and is susceptible to manipulation.

All pieces from the torrent file, thus all files specified in the torrent file are down-
loaded by torrent/peer. Support for selection a subset of the files may be imple-
mented.

Testing is also a challenge, for example to test whether an anti-abuse measure works
requires an abusing peer. Even though the protocol is simple, there are still lots of cor-
ner cases that need testing.
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