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ABSTRACT

In the Octopus each user has a single PC in the network that is used
to run applications. Any machine in the Internet can be used as a user�s
terminal to access the Octopus, which means that the latency between
the user interface devices and the central system may be utterly high.
Multiple machines are used as terminals, simultaneously. We have devel­
oped a unique user interface file system for the Octopus, o/mero, along
with a user interface viewer, o/live. Together, they can transparently
deploy and distribute user interfaces, and any of their components, onto
one or more terminals connected to the PC by the Internet. Individual UI
components can be replicated in a transparent way, as a convenience for
the user. The UIMS is actually a file server that maintains the UI elements
as files, and is used by independent viewers that interact with the user.

1. Introduction

Following the ideas of Plan 9 [5] and Plan B [1], we are currently implementing the Octo­
pus, a system whose goal is to provide users with a homogeneous and easily extensible
distributed computing environment. Octopus is implemented on Inferno [4] and thus
can run either on the bare hardware, or hosted on Plan B, Plan 9, Windows, Linux, and
other flavors of UNIX. Furthermore, a plug-in for the Firefox web browser is work in pro­
gress.

Unlike many other systems, the main idea behind Octopus is to simplify the distri­
bution of the system by centralizing everything. To achieve this, each user designates a
particular computer in the network as his personal computer, referred to as the �PC�,
and runs on it all software; both system and applications. Other computers are merely
used to provide resources (data, special devices or other services) to the PC. Such
machines, known as terminals, run the Octopus software in order to export all or some
of their resources to the PC.

Terminals may provide any device to the PC, but most notably, they provide graphi­
cal user interfaces, audio, and voice support. While in the office, an Octopus user com­
bines multiple terminals to gain more screen space. While on the move, a user may
employ any machine available in the environment to run an application program (avail­
able for all the platforms mentioned above) and convert the machine on a terminal.

Developing a UI service for the Octopus has been challenging, because of several
reasons:

1 With round trip times (RTTs) in the Internet of 100 or 200 milliseconds, deploying
user interfaces on remote machines is a problem. User interaction must be decou­
pled from the user interface, perhaps surprisingly, because of latency.



2 Having multiple machines, users want to move components of UIs among
machines, freely. This should be done without disturbing applications. Otherwise
complexity increases.

3 Because of the multiplicity of machines, for some applications, it is desirable to be
able to replicate some of their controls (UIs) on several different machines to have
them available at different places. For example, to have the room�s music player
controls at all machines in the room, or to have a copy of the mail interface at dis­
tant machines.

4 As terminals are supposed to be volatile, we want to keep the state and layout of
user interfaces in the central computer, so that attaching a new viewer suffices to
continue working as it was left off. In fact, a user might switch off a terminal and
swich one or more ones later (perhaps at a different location) to continue working.

5 We want to keep applications simple, regarding UI programming, and unaware of
these problems.

6 Last but not least, we want the user interface to be available for programmatic
inspection and use from outside its application, to be able to write tools to adapt
user interfaces to the circumstances derived from the context of the user, like done
in Omero [2].

We have redesigned and reimplemented the Plan B user interface service, Omero [2], for
the Octopus [3], to address these issues. After discussing some antecedents of our
work, the rest of the paper describes it and our experience building it. Before proceed­
ing, we have to say that the current implementation is still work in progress, because we
still keep changing the user interface and because we still try to make it less sensible to
latency in the network

2. Problems with Omero

Omero [2] is the Plan B window system. In Omero, the window system is a file system
that uses a file hierarchy to represent a hierarchy of panels (sharing a screen). An omero
application creates a file hierarchy to create a hierarchy of panels or widgets. As an
example, figure 1 depicts a menu and the corresponding file tree.
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Figure 1: Files used to represent panels in Omero (and O/mero).

The application performs I/O on the files to operate on the panels. Events from the user
interface to the application are similar to those of Acme and are delivered through net­
work links established from Omero to the applications. Figure 2 shows the processes
involved. Omero runs at the terminal machine, close to the screen. Ox (the shell for
Omero) and other applications may run at the terminal or at any machine with the
Omero file system mounted.

This works fine within a local area network but is not well suited for the Octopus
because of the problems we describe next.
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Figure 2: Processes involved in Plan B’s Omero.

2.1. Latency

Applications perform most of the operations by creating files, removing files, and writ­
ing small strings to them just to update the user interface. The result is that bandwidth
is not usually a problem unless big images are displayed. Even then, the images are kept
within the window system and there is no need to refresh them.

The actual problem is latency. With network round trip times of 100 milliseconds
(and above) Omero becomes unbearable to use. Each file operation (performed via 9P)
requires multiple RPCs. For example, to create a button panel we might execute:

; mkdir /n/omero/row:wins/text:notice

Doing this from the shell requires 108 RPCs using Inferno. Using the system call, it
requires 4 RPCs. That would be 200ms if done over a connection with 50ms of RTT.

2.2. Network connections

The peer-to-peer nature of Omero makes it necessary for any omero to be able to dial
any application. This is necessary to replicate panels. By copying the control file of a
panel (to the new copy) the Omero holding the replica would dial the application. From
that point the library used by the application would keep the copies updated. In any
case, the system holding the applications must still dial and mount each Omero being
used.

In the Octopus it is common to have terminals behind NAT boxes, and this makes
it unfeasible (in practice) to let anyone dial a terminal. Only the PC is assumed to be able
to listen for and to accept network connections.

2.3. Race conditions

There are races among Omeros sharing panels that can be avoided or minimized when
latencies are not so bad. In the Octopus, using the technique employed by Omero
would either block other terminals for a long time or increase the race time window
enough to break the window system (depending on how we address this issue).

This means that it becomes undesirable to handle coherency between the different
replicas directly between the terminals (as Omero would do).

2.4. Convenience

When terminals are used to resume sessions, it is convenient to be able to keep the
applications running and resume just the sessions. There is no easy way with Omero of
doing this.

This problem is more serious in the Octopus than it would be in Plan B, because it



is easier to start an Octopus terminal than it is to start a Plan B one (just run a cus­
tomized Inferno on whatever system might be at hand). As a result, not being able to
resume a session is now considered a burden for the user.

It is also desirable to be able to operate on any text or panel no matter the screen
hosting it. In Omero we use shell scripts that operate on the file interface. Now that ter­
minals may be far away, it becomes more desirable to have a command language (simi­
lar to Sam), for example, to replicate particular panels at the local terminal (and also
perform edit operations).

2.5. Portability

Omero is implemented in C. It would run on Plan B or Plan 9 (provided its fonts are pre­
sent) but not on any other system. For the Octopus it is not reasonable to ask a user to
boot a native system just to access the central PC.

3. O/mero and O/live

Trying to address the problems mentioned above we built a new window system for the
Octopus that is implemented by two programs: O/mero and O/live. The former main­
tains the state for the window system as a file system (and handles panel replication);
the latter is a viewer that maps the file system to a graphical user interface on a particu­
lar terminal.
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Figure 3: Structure of o/mero and o/live.

Figure 3 shows the resulting design. O/x (the new shell) and other applications create
their interfaces by using the file system provided by O/mero. Unlike before, O/mero
does not draw and does not process mouse or keyboard input. O/live, a new program,
builds a graphical user interface corresponding to the file system kept by O/mero and
updates it according to user I/O.

Applications can be now kept close to O/mero, within the single PC, and there is
no problem regarding latency or bandwidth as far as a the applications are concerned.
The viewer, O/live, is decoupled from the application even more than it was in Plan B.
Several benefits arise: (1) the viewer can be changed without modifying omero; (2) the
viewer can be shut down and restarted without the application noticing; and (3) it is fea­
sible to implement different viewers with a different look and feel each.

O/mero provides a file tree for the applications and distinct, separate, file trees for
the viewers. Applications create panels at /appl (relative to the O/mero root). The
paths for the panels in the /appl tree remain fixed for their entire life, which simplifies
locating a panel. Note that in Plan B�s Omero the path for a panel was modified as the
panel location in the screen changed.

Directories created at the root of the O/mero tree, other than /appl, represent
screens. The viewer, O/live, receives as an argument the path to the screen to be viewed



in the screen. Creation of a screen directory automatically creates an initial panel hierar­
chy with several rows and columns, as a convenient initial layout for an empty screen.

A panel created at /appl is not shown anywhere (unless it is created within a
panel already shown). To show a panel at a particular screen, a replica of the panel
must be established at the screen (and particular location) of interest. From that point
in time, the directory representing the panel can be seen both under /appl and at the
location of the replica in the file tree for the screen. If the panel is moved in the screen,
the location of the replicated file would change to reflect the new layout. Of course, to
view a panel in two or more different screens, two or more replicas of the panel may be
created. Moving a panel from one location to another is also feasible but only replicas
may be moved (not so the original panel).

Figure 4: A terminal running O/live from a mounted O/mero.

As an example, the following commands create a text panel, copy /NOTICE into
it, create a screen, replicate the panel at the new screen, and move it to the second col­
umn of the screen.

% cd /mnt/ui
% mkdir appl/text:xample
% cp /NOTICE appl/text:xample/data
% mkdir screen
% echo copyto /screen/row:wins/col:1 > appl/text:xample/ctl
% echo moveto /screen/row:wins/col:2 > screen/row:wins/col:1

Note how the move operation is performed on the replica to be moved, and not on the
original file at /appl. Being all the involved files under the control of a single pro­
gram, a move or a copy operation is performed atomically by a single control operation,
without affecting the application.

To decouple the viewer from the file system, most edition is meant to happen
locally in the viewer. Nevertheless, O/live tries hard to keep the file system up to date to
let the user kill the viewer at any instant.



O/live shows a screen layout corresponding to the file tree it is viewing (like Omero
did). Figure 4 shows an example screen. To retrieve the contents of a panel the viewer
may read its data file. That file may be updated later by the viewer to reflect user
changes. Moving panels and copying them with the mouse results in control operations
issued to the file system, like the ones in the example above. Once O/mero rearranges
the file tree in response to such control requests, the viewer is notified of the changes
and it updates accordingly.

If the application updates the contents of a panel O/mero would notify all the view­
ers involved, to let them update their replicas. In the same way, when a viewer updates a
panel other replicas are notified.

The contents of the control file for a panel (like in Omero) contain panel attributes.
Updating the control file for the panel at /appl would update all the control files in the
replicas. However, updates for the control file of a replica may or may not propagate to
others. For example, writing hide to a control file hides a panel. Writing this under
/appl makes all the replicas hide. Writing this under /screen would hide the replica
responsible for the control file used. Other control operations (and the corresponding
attributes) are global; e.g., font.

3.1. Events

A separate program (not mentioned before) provides event delivery to O/mero, O/live,
and the application. This program permits clients to create files representing event
reception ports, and to write on them a regular expression to select the events of inter­
est. An event is posted by writing its text to the send file provided by this program.

O/mero notifies the application of abstract events related to its panels. Typical
events are look, exec, close, and dirty (look for something in the file system, execute a
program, the last replica for a panel is gone, and the user has edited the panel con­
tents). Table 1 shows the complete set of events delivered to the application along with
their meaning.

________________________________________________________
Event Meaning________________________________________________________
Look look for something in the file system________________________________________________________
Exec execute a command________________________________________________________
Apply apply a command to the selection________________________________________________________
Close last replica for the panel is closed________________________________________________________
Click mouse event (only sent when requested)________________________________________________________
Keys keyboard event (only sent when requested)________________________________________________________

Interrupt user wants to interrupt the application________________________________________________________
Clean the panel is clean (no edits by the user)________________________________________________________
Dirty the panel is dirty (user made edits)________________________________________________________













































Table 1: Events sent from O/mero to the application.

O/mero also posts events reporting changes in the file trees for the viewers, as shown
in table 2.

All events have the same format, no matter their purpose or destination, as shown in
this example:

o/mero: /appl/xample:text 4 exec pwd

The event includes the name of the program posting it, the path for the panel (replica), a
panel identifier (as set by the application), the event type, and any optional argument for
that event. Viewers may register to receive events for panels with paths that have as a
prefix the path of the screen viewed. Applications, on the other hand, register to receive



______________________________________________
Event Meaning______________________________________________
Update update the view for a subtree______________________________________________

Top view the subtree rooted here______________________________________________
Insert text was inserted in a text panel______________________________________________
Delete Text was deleted from a text panel______________________________________________
























Table 2: Events sent from O/mero to O/live.

events for the panels they created under the /appl tree.

An important event sent from O/mero to O/live is update. It carries as an argu­
ment the path for the subtree that has changed. Changes to multiple files may be
reported by a single event referring to a common ancestor in the file hierarchy. Upon
receiving an update a viewer should check the file system for changes and update
accordingly.

Text panels are interesting in that viewers deliver individual insert and delete
events via control operations on the panel (instead of updating the entire file). O/mero
reacts by posting insert and delete events to other replicas involved (to save them the
burden of re-reading the panels). This also helps to keep the file system synchronized
with the viewer.

O/live synchronizes its state with the file system whenever there is a mouse move­
ment, and also before writing exec or look control requests (which make O/mero post
the corresponding events to the application involved). The selections on the panels are
kept as attributes in their control files, and the most recently used panel is named in the
file /dev/sel, available for all programs to see. This is important for what we describe
next.

3.2. Command language

For O/live we wanted to be able to use the Sam command language. We have adapted
the code from Inferno�s Acme to our purpose. Before describing our changes, we have
to say that this piece of the implementation is still crashing, and can not really be used
yet.

To let the edition language interact heavily with the text being edited, we placed
the implementation inside O/x, que shell for O/mero running close to it. Since O/live
synchronizes with the file system before triggering the execution of any command, O/x
has all the needed information in the O/mero file system.

An interesting change to the command language is the introduction of new com­
mands to select panels at any screen, delete them, copy them, and move them. With
such changes the user may write commands to move certain panels to the viewer being
used, or to do similar tasks.

4. Implementation

By the time of writing this, the window system described here can be used but not yet in
production. The editor command language is not fully debugged and tested and others
parts of the system (although debugged, tested, and being used) are not exercised
enough to be reliable. That is to say that this is work in progress.

The implementation for O/mero is 2787 lines of Limbo code, where 706 lines are
used to implement particular panel types. The program maintains an array of panels,
each of which keeps an array of replicas. The replica number zero corresponds to that
under /appl and others refer to actual replicas. The panel keeps the data for the panel
as an array of bytes (without any structure). Replicas keep the data for the panel
attributes, so that each replica may have different attributes as explained above.



Attributes are kept as a list of name/value pairs.

In general, O/mero does not interpret the data it keeps. However, it is important to
be able to report errors to the user as a result of bad control requests, attempts to cre­
ate panels of unknown types, etc. O/mero does not implement any panel on its own but
loads panel implementations early when starting. All modules in files matching
/dis/o/omp*.dis are considered to implement one or more particular panel types.
An array of panel implementations is maintained to interrogate each one for known type
names and for error checking functions for both data and attributes.

Apart from this, and what has been said in previous sections, O/mero works simi­
lar to Omero [2].

O/live is more complex because of the details of layout handling and its attempts
to mask latency problems. It has 6730 lines (also in Limbo), where 3725 lines are there
to implement particular panel types. Similar to O/mero, O/live does not implement any
panel on its own. It would load all modules in files matching /dis/o/owp*.dis,
which know how to handle the mouse, the keyboard, how to draw, how to process data
and ctl updates, and how to handle events for particular panel types.

To try to mask latency problems, O/live spawns multiple processes to read file
trees concurrently upon receiving update events posted from O/mero. The design is
depicted in figure 5.
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Figure 5: Processes in O/live

Like in Rio or Acme, there are processes attending the mouse, keyboard, and events
from the underlying system (including those of O/mero in this case). All of these pro­
cesses determine which operations should be done on the tree of panels and forward
requests to a central tree process to execute the appropriate action. For those requests
that can be performed immediately, the tree performs them by itself and replies to the
caller. Those that either take time are delegated to helper processes (cached using a
scheme similar to Acme�s Xfids [6]).

Locking between conflicting actions (like updating a subtree and handling mouse
commands on its panels) is handled by the tree itself. While an operation is in progress
(delegated to a helper process) the path for the top-level panel involved in the operation
is kept in a locked paths lists. Operations involving paths that are a prefix of a locked
path, or where a locked path is a prefix of the operation path, are held. But for the tree,
the rest of the implementation can be kept unaware of locking.

Regarding writes to O/mero, O/live updates the tree asynchronously whenever fea­
sible trying to block only when necessary. A subtle issue is when to synchronize to



O/mero those changes resulting from user edits. Synchronizing seldom would result in
editions being lost if the viewer crashes or is killed by the user. Doing it too often would
result in unacceptable delays for the user. The current implementation collects edits
between mouse movements and combines them. When the mouse moves, a single write
to a panel control file reports the insertion and deletion of text to O/mero.

5. Application interface

We have implemented a convenience library for using O/mero from Limbo programs. It
is described in panels(2) in the Octopus manual. The library provides a Panel data type
to represent a panel. It keeps the path for the panel in the O/mero file tree. The library
is intended mostly to aid in the parsing of events. Otherwise, users operate directly on
the files provided by O/mero to operate on the panels.

As an example, the following code initializes and creates a text panel filled with the
text in /NOTICE.

panels−>init();
ui := Panel.init("xample");
text := ui.new("text:xample", 1);
sfd := open("/NOTICE", OREAD);
dfd := open(text.path+"/data", OWRITE|OTRUNC);
panels−>copy(dfd, sfd);

Both Panel.init and Panel.new use create(2) to create the panels. The former uses
the program name and process pid to create a unique directory under the /appl file
tree. The latter creates a panel within the one used to make the call. The copy function
is a helper used to copy entire file contents from one place to another (which is common
when using O/mero).

To show the previous panel in the first column of the first screen the application
may execute this:

scr := hd panels−>screens();
col := hd panels−>cols(scr);
text.ctl(sprint("copyto %s0, col);

The functions screens and cols return a list of screen names and column names and
are implemented by reading the respective directories.

Event processing is also simple. The library provides a conventional channel based
interface for receiving events, as can be seen in the example below.

c := ui.eventc();
for(;;){

ev := <−evc;
if (ev == nil)

break;
print("path %s id %s ev %s0, hd ev, hd tl ev, hd tl tl ev);

}

As an aid for the application, O/mero permits setting a per-panel attribute holding an
integer panel identifier. Also, it permits setting a per-panel attribute keeping the PID of
the process associated to a particular panel. Both attributes are inherited when not
explicitly set. The panel identifier is handy to quickly locate the panel for a particular
event. The process identifier permits O/mero to notify the application of interrupt
requests from the user.



6. Lessons learned and future work

It was very hard to use Libframe right. This is the Plan 9 library ported to Inferno for
Acme. In the end, we had to write our own mostly because we were incapable of using it
right. Our current implementation redraws more than strictly necessary, but is easy to
use and easy to debug.

At some point we considered implementing a command language to define com­
pound widgets. This was future work planned for Omero, with the aim of defining sim­
pler interfaces requiring less communication between the application and the file sys­
tem. The new architecture (with O/mero close to the application) makes this unneces­
sary. The programming language is indeed used as the command language used to
build compound widgets. The file system interface provides for convenient parsing of UI
elements and data, supplying most of the user needs.

Regarding latency, we have tried to use O/mero and O/live in several different sce­
narios that we describe next:

" Mounting O/mero using 9P, with a latency of 100ms. In this case, delays are so big
that it is not feasible in practice to use O/live.

" Mounting O/mero using Op, with a latency of 100ms. In this case, O/live feels
quite slow but it can be used. This means that there can be a delay of one or two
seconds between a user request to edit a new file and the moment when the new
layout for O/live (with the new file) has been loaded.

" Mounting O/mero using Op, with a latency of 50ms. In this case, O/live is still
slow, but not much more than in the next case.

" Mounting O/mero within the local machine. In this case O/live feels slower than,
for example, Acme. This is probably a result of the inefficiency of our frame library
and also a consequence splitting the service among different programs (O/mero,
O/live, O/x, and O/ports).

In the future we will profile and modify this set of programs to make them faster. One
particular optimization we are considering is bundling the changes for the O/mero file
tree along with update events sent to O/live. This avoids the need to issue multiple RPCs
to read the file tree and bring the viewer up to date.
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