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ABSTRACT

We discuss a few simple scenarios of how we can design and develop a compositional
synthetic file server that gives access to external processes — in particular, in the context of
testing, gives access to the system under test — such that certain parts of said synthethic
file server can be prepared as off-the-shelf components to which other specifically written
parts can be added in a kind of plug-and-play fashion.

The approaches only deal with the problem of accessing the system under test from the
point of view of offered functionality, and compositionality, but do not consider efficiency
or performance.

The study is rather preliminary, and only very limited practical experiments have been
performed.

1. Introduction and motivation

In our contribution to the first IWP9 in 2006 [1] we gave a description of the model-based
testing [2] approach that we use, including an overview of our test tool architecture. We
do model-based black box conformance testing of reactive systems. We replace the usual
environment to the system under test (SUT) by one that is under control of the test tool.
The test tool mimics the environment that the SUT expects and interacts with it. In each test
step either a stimulus, obtained from the model, is applied (input is given) to the SUT, or an
observation (output) is obtained from the SUT, and it is checked whether it was expected by
the model - if not, an error is found.

The high-level architecture of the test tool is depicted in Figure [1]
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Figure 1: Complete tester with implementation under test.

The test derivation component computes from the model the stimuli that can be given, as
well as the expected observations. The adapter provides the access to the SUT. The driver
component provides the 'main loop’ of the tester. It uses the test derivation component and the
adapter to do its work. In our IWP9 2006 constribution we focused on the the test derivation
component, and gave a decomposition of it. Now we focus on the adapter component.

To be able to interact with an SUT an adapter has to speak the right protocols or to implement
the right API functions. In the models the interactions between SUT and its environment are
described in an abstract way, and these abstract representations are also used on the interface
between the adapter and the driver. Hence, the adapter also has be able to relate its actual
interactions with the SUT to these abstract representations. Different models of the same
system may use different abstract representations for the same real-world interaction. This
makes the adapter specialised in two ways:



1. towards a particular SUT (or SUT family) with which it has to interact, and

2. towards a particular abstract interactions representation of the model (or family of mod-
els) of which the test cases are derived.

Whereas for all other test tool components in the architecture we can have generic implemen-
tations, we do not intend to have a single generic adapter implementation. That seems simply
infeasable. Instead we would like to have an adapter framework that allows us to easily and
quickly develop a specialised adapter for a case at hand by simply plugging together already
existing components with newly developed SUT- or model-specific ones.

In order to make progress in turning this idea into reality we will define a generic interface
between the adapter and the driver, and study a generic adapter architecture to identify those
components for which we can create generic, reusable implementations, as well as those that
typically will have to be specifically implemented. For this paper our aim is to study in particular
how we can realize such a “plug and play” approach using the mechanisms that Plan 9 and
Inferno offer us, and briefly look at existing end-user extentable programs in Plan 9.

1.1. Adapter interfaces

In Figure 2] we see that the adapter only interfaces with the driver and with the SUT. The
adapter may have multiple interfaces with the SUT, depending on how the SUT interacts with
its environment on the one hand, and depending on what kind of environment we, as tester,
want to provide to the SUT on the other hand. These interfaces will vary from one SUT to
another, or even with the same SUT, they may vary from one test setup to another one. We
refer to these interfaces as PCOs (Points of Control and Observation).
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Figure 2: Interfaces of the Adapter.

We already decided on the nature of the interface that the adapter provides to the driver
in [I]: it is a file system interface (fs in Figure [2)). The file server interface consists of two
files: write-only file input and read-only file output. When a stimulus in abstract form (of a
test case) is written to input the adapter will issue the corresponding stimulus to the SUT
(initiate the corresponding interaction with the SUT). When output is read the adapter returns
an observation in abstract form that can be passed to the test derivation component, to be
checked. The stimuli and observations passed over the interface are in the abstract model-
specific representation.

1.2. Adapter functional decomposition

We now decompose the adapter. A high-level decomposition indentifies the following func-
tionality in the adapter, as depicted in Figure [3}

e file server interface to driver (fs)
e handling of SUT interface at PCOs

e mapping between abstract representation used at driver interface and concrete represen-
tation used at PCO interfaces

e observation queue, to store observations until driver requests them

In Figurewe already made a further decomposition step: each PCO (each interface by which
we access the SUT) has its own handler. We can similarly further decompose the mapping
component, for example to have a separate mapping component for each individual PCO.

This decomposition allows us to make the following observations. Firstly, the interface to
the driver can be provided by a generic adapter component. The data exchanged over that
interface will vary, but the interface itself will not. Secondly, the particular PCO handlers are
likely to be reusable, at least for those interfaces to the SUT where the interaction consists of
exchanging messages. Thirdly, the mapping itself is likely to be specific, and thus not directly
reusable. It may however be possible to have generic mapping functionality that is instantiated
for a specific mapping.
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Figure 3: Functional Decomposition of the Adapter. For clarity we use dotted arrows for the
flow of stimuli and solid arrows for the flow of observations.
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1.3. Refining adapter functional decomposition

We look at how we can refine the functional decomposition along the following axes:

by deciding which methods of interaction we will support,

by splitting components such that data flows through them in only one direction,

by looking at concurrency and blocking,

. by identifying multiplexing and demultiplexing components.

We dlscuss each of these separately below. Before we do that we first depict the resulting
design in Figure [l Three components in the Figure we only briefly mention here. Component
datagen is used to build the mapping table represented by datamap in a demand driven (lazy)
way while the test execution run takes place. Component dynconfig is used to dynamically
reconfigure the adapter by activating or even adding PCO handlers and encoders and decoders

in the course of a test execution run. Component timer is used to see if the system under test
does respond within a reasonable amount of time to a stimulus that was given.
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Figure 4: Full decomposition of adapter with per PCO separate translation (encode;, decode;)
and interaction (stimulate;, observe;), a dynamic reconfiguration component (dynconfig) with
its own translator (encode), a multiplexer that directs stimuli to the right translator (for PCO
or for dynconfig), a queue to store observations, a timer to observe quiescence, a data map
that holds the atomic data translation mapping, and a data generator that produces data
values to extend the data translation mapping on demand.



1.3.1. Interaction methods

For now we only support message based interaction with the SUT, like via network protocols,
or through the interaction with a program over its standard input and output. For a number of
network protocols Plan 9 already has a uniform interface via the files under /net. We may be
able to extend our approach to other interaction methods by using message based interaction
with proxy components that participate in the non-message based interaction. We will not
discuss this further here.

The functionality that we need for connection-oriented network protocols differs slightly from
that needed for connection-less ones. The reason for that is that we typically associate a
PCO with each established connection such that once the connection has been established
we only need to pass the message data through the associated translation and interaction
components. The connection information, like connection endpoint addresses, is only necessary
during connection set up. For connection-less interaction we typically associate a PCO with
each network access point of the tester such that the message data must be accompanied by
at least the remote network access point address; the PCO will know its own address.

In case of interaction with a program, what corresponds to connection set up is starting the
program. When we start a program we have to provide it with configuration information. The
configuration information may need to contain information about network addresses for other
connections that the program has to establish with its environment. If the addresses refer
to network access points (PCOs) of the tester, their addresses may not be known until the
network access points (PCOs) have been set up. What we learn from this is that we must
have a means to specify the order in which PCOs are set up and configured.

1.3.2. Data flow

We refine the decomposition by splitting the single mapping component of Figure [3] into
multiple ones, one per PCO, which we once more split according to the direction of the
data flow. This gives us separate per-PCO encoders and decoders. The mapping that is
built into these encoders and decoders is parameterized to such that test execution run time
parameters, like network addresses or test data values, can be changed from one test run
to another. Component datamap holds mapping tables for such run time parameters. The
datamap component is consulted by the per-PCO encodeers and decoders, such that each of
them uses the same parameter values.

Conceptually we also split each of the PCO handlers according to the direction of the data
flow into separate stimulator and observer components.

1.3.3. Concurrency and blocking

In general, all handlers of our external interfaces must run independent from each other, to
avoid the blocking of one making affecting the ability to interact for another. Thus, the PCO
observer components need to be able to accept data from the SUT at all time, independent
from each other, and from the interface to the driver.

1.3.4. Multiplexing and demultiplexing

We now have for each PCO a decoder that delivers observations to the observation queue.
per-PCO mapping decoder. Conceptually thus the observation queue component contains
demultiplexing functionality to pass the observations that it receives from the decoders one
by one to the observation queue. For stimuli we have the opposite situation: a stimulus
received from the driver must be handed over to the encoder for the right PCO. We add a
mux component to do this.

2. Implementation scenarios

We now discuss various scenarios for the implementation of the components and their inter-
faces. This is where the “work in progress” part of this paper applies: our quest for the most



appropriate approach in a Plan 9 environment is not over yet, although we believe that we are
making progress.

We start by describing our current design, after which we discuss alternatives.

2.1. Single synthetic file server with plugin programs

We design the adapter as a single synthetic file server that is parameterized: the translation and
interaction components — the components that typically vary from one test execution set up to
the next — are not implemented in the file server itself, but provided to it in the form of separate
plug in programs. The single file server provides the basic adapter framework. It implements
the generic components of our design, i.e. the interface to the driver, the multiplexer and
demultiplexer, and the observation queue. The plug in programs implement the translation
functionality and the PCO handling. The plug in programs run concurrently by which they
satisfy the requirement of blocking independence. For now the file server also implements the
shared data map; in the future we may prefer to implement also that as a separate plug in
program.

The translation programs work like filters that read messages that have to be translated from
standard input and provide the result on standard output, and provide error messages and
diagnostics on standard error. We have separate programs for encoding and for decoding.
These programs need to be able to access the shared data map, as we indicated above. The
data map may be constructed in a lazy (demand driven) way, i.e. its contents may be updated
while a test run takes place. Those updates will only extend the map; they will not change
or remove parts of the map. Because of the updates we can not simply provide the map as
a file that is read by an encoder or decoder during start up. Instead of the map itself we
provide an interface to the map. The interface takes the form of a single file to which data
map translations requests can be written and from which results can be read. The single file
is synthesized by the adapter file server, and the name of the file is passed as command line
argument to translation plug in programs when they are started by the synthetic file server.

The interaction programs also interface with the synthetic adapter file server via their standard
input, output and error. We have a single program for each PCO: the program provides stimuli
and obtains observations. What configuration information the interaction programs need is
connection kind specific.

The synthetic adapter file server provides the connection between translation plug in programs
and interaction plug in programs. The synthetic adapter file server provides the synthetic
files that are used for the interface with the driver. In addition it provides a file to which
configuration commands can be written. The exact form of the configuration interface is still
to be decided. The configuration commands start given plug in programs with given command
line arguments, and to set up the infrastructure (a pipe) to connect them together. This
interface is intended to be used for the initial (pre-start) configuration of the adapter, as well
as for dynamic reconfiguration.

Discussion This approach was partially inspired by cmd(3) of Inferno.

We have chosen the encoding and decoding components to be separate, concurrently running
components that wait until work is provided to them in the form of a message to process,
process the message and produce corresponding output, and wait for the next message. Al-
ternatively, we could have made them sub-routines that are only invoked to do a particular
task. However, that would have made it impossible to extend the adapter with new translation
functionality without recompiling the PCO handlers.

An important consequence of the choice we made is that the order in which interactions take
place at the PCOs (the order in which the adapter receives messages from the system under
test) is preserved as the order in which observatons go through the observation queue. Because
both PCO handler and mapping component run concurrently, it is imaginable that some PCO
handler and decoding mapping component combinations run faster than others. It is then
also imaginable that an interaction a that takes place before another interaction b is processed
slower than interaction b such that b reaches the observation queue before a. This issue is for
the moment left for further study.

Advantages of this approach are the following. Firstly, we use compositionality on the level
of programs, not on the level of code modules, which means that we can reconfigure without



having to recompile. Secondly, the synthetic adapter file server only needs to set up the pipes
over which the plug in programs will interact. It does not have to move data around between
those programs itself.

Disadvantages of this approach are the following. Firstly, the essential interaction goes via
standard input and output of the plug in programs which means that both data and control
(configuration) messages go over the same interface. We can separate these using the approach
of acme(1) [3]: let the synthetic adapter file server provide each of the plug in programs with
multiple synthetic files, one for each different flow of information. However, in that case the
synthetic adapter file server also has to process these files (transport the data between the
components).

2.2. Multiple identical synthetic file servers with plugin programs

The single synthetic file server approach that we discussed in the previous section deals with
configuration in a top-down manner: we first start the synthetic file server, we then tell the
synthetic file server which plugins to start, and how they should be connected. This approach
is good for actual deployment, but for experimentation a more bottom up approach would be
useful.

With the bottom up approach we initially start the PCO-handler programs. With each PCO-
handler program we start a dedicated muxview synthetic file server by which we interact with
the PCO-handler. Such muxview offers access to the standard input, output and error of its
connected PCO-handler via the synthetic files that it serves.

A muxview synthetic file server combines two functionalities. Firstly it “translates” between
access via standard input, output and error of a running program and access via files visible in
the namespace. Secondly, it multiplexes access to the programs standard output resp. standard
error to multiple readers, and the programs standard input to multiple writers. Each reader
sees the same data. The data that is written to the programs standard input can be monitored
by multiple readers via a separate synthetic file.

When a muxview file server is started it is given a program with command line arguments to
start. It starts the program with the given arguments, with the standard input, output and
error connected to pipes of which muxview holds the other ends. Because of the constraints
regarding concurrency and blocking the muxview file servers will consist of multiple processes:
two reader processes that read data from the programs stdout resp. stderr pipes and passes it
to a middle man that enqueues it until the user is ready for it, a file server proces that reads
Op requests from the user, and passes them on to the middle man which either processes them
immediately and passes back responses, or enqueues the requests until the data needed to
service the requests comes in. This approach was not invented by us, but adapted from the
sshnet implementation.

For the combination of muxview and encoder or decoder we need a uni-directional version of
muxview. For the encoder muxview only needs to provide access to its standard input and
standard error, and muxview should connect the standard output of the encoder to a given
file. This given file will typically be a writeable file of a muxview that is connected to a PCO-
handler. For the decoder muxview only needs to provide access to its standard output and
standard error, and muxview should connect the standard input of the decoder to a given file.
This given file will typically be a readable file of a muxview that is connected to a PCO-handler.

We can extend muxview to make data available in multiple formats, like for example a 'raw’
format containing the data 'as is’ as well as a hexadecimal representation.

Discussion The ability to have multiple readers, and the ability to add new readers while the
program is already running allows us to step by step construct the components structure — i.e.
on top of the encoders and decoders we have the mux component and the demux-+observation
queue — with the ability to eavesdrop at every connection between the components. This eases
debugging of the components, and may even help to reverse engineer the precise format of the
interaction messages of the system under test.

Initially we designed the muxview file server functionality as part of individual PCO handler
components. The advantage of that approach is that we get a uniform interface for the PCO
handler components which provides better decoupling of translation and interaction compo-
nents. This may lead to reduced interfacing dependencies between PCO handlers and encoders



and decoders, and thus potentially to easier component reuse. However, it turned out that
most of the complexity of the resulting components was in the multiplexing file server support,
and the actual PCO handling code was only a fraction of the code of the entire component.
Because of that we changed the design and extracted the multiplexing file server functionality
as a separate reusable building block: muxview.

For the unidirectional version that we need for the encoder and decoder the “given file” that
we connect to standard input or standard output of the program started could be the standard
input resp. standard output of muxview itself.

Instead of a single synthetic file server that gives bidirectional access to standard input and
output of a program we could also consider a simpler file server in the spirit of “tee” that only
provides unidirectional access. We have not thought this through in detail.

2.3. Single monolithic synthetic file server

A less compositional approach is to build the entire adapter component as a single monolothic
synthetic file server. As we have seen, several of the functional adapter components need to be
able to run concurrently. For this we use the Plan 9 threading library. So, the functional com-
ponents will be mapped onto threads and procs, and their interfaces are formed by messages
sent over channels.

Discussion Advantages of this approach are the following. We can implement those sub
components that receive data from the environment of the adapter (i.e. from the driver and
from the SUT) as separate processes such that they can block when waiting for data. The
components of the adapter can pass data over channels. By having a single multi-threaded
implementation we can reduce the number of times that data is copied, by passing pointers
around over the channels.

A disadvantage of this approach is that the reusable components consist of pieces of C code,
and thus our intended “plug and play” involves piecing together pieces of C code — we prefer
reusable components that can be reused at the shell level as described with the previous
approaches.

An alternative could be to use Inferno and provide the components as separate Inferno modules.
We have not looked into this yet.

3. Related work

We are aware of the following extension mechanisms offered by existing Plan 9 programs. We
have not studied whether Inferno has additional features to support this.

synthetic file system Acme(1) provides a synthetic file system to client (helper) applications.
The helper applications are started indepedently, outside the control of acme(1).

pipe to standard input and output of programs Httpd(1) communicates with clients over
their standard input and output. The clients are started by httpd(1). Also the juke(7) player
component playlistfs(7) uses external programs, in its case to decode the audio file formats.

configuration file and synthetic file systems The plumber(4) [4] reads from a configuration
file which helpers potentially are available, and how they can be started when not yet available.
The helper programs may be started outside the plumber(4), but in addition the plumber(4)
will start them when needed. Each helper application implements a synthetic file server over
which it is accessed.

4, Discussion

For the PCO handler programs the implementation as separate synthetic file servers, either
using muxview together with plugin programs, or using natively implemented file server pro-
grams, is probably the most versatile, also because it allows exploratory manual interaction
with a system under test before the mapping (encoding and decoding) component is imple-
mented. This resembles a small part of the plumber(4) approach. However, the file server



interface overhead of our approach — even when extracted into separate component muxview
— is rather large. The use of filter-style plugin programs leads to a more balanced design.
Moreover, if we really need it, we can regain some of the file server interface style flexibility
by using muxview together with the plugin programs.

For the encoder and decoder components that essentially only transform data the simpler pipe-
style filter approach is probably sufficicient, and therefore more suited, because implementing
pipe-style filters is less involved than implementing a synthetic file server. For the coordina-
tion between multiple encoder and decoder components, in particular when using on-the-fly
created mappings, the most natural implementation for a coordination component consists of
a synthetic file server. This could be the same synthetic file server that provides the driver
access, or it could be a specific one only for mapping (coding) coordination.

5. Conclusion

We have discussed a number of scenarios to construct a multi-component synthetic file server
in a compositional way.

The simplest solution — using the thread library — offers the least isolation between the com-
ponents, but also has the least implementation overhead for the inter-component interfaces.

The more involved solutions where the individual components are implemented as separate
programs offer greater separation between the components, and allow greater implementation
freedom for the individual components. However, this may come at the cost of increased inter-
facing code size. Extracting the core interfacing functionality in a separate reusable component
partially eleviates the problem.

Due to time constraints these conclusions are mostly based on thought experiments and only
a rather small implementation experiment: two small implementations of synthetic file servers
that give access to udp, and to the standard input and output of a forked-off program. Both
offer access to their “thing” using the same file interface. In these programs the code that
gives access to udp, resp. the forked-off program is small compared to the synthetic file server
implementation code. This is in part caused by the decoupling between the data producer
(respectively udp, and the standard output of the forked-off program) and the file server
access to it, as well as the ability present in these synthetic file servers to make the same data
available to multiple readers in either “as is" (raw) or hexadecimal format.

Acknowledgements Francisco Ballesteros provided valuable suggestions for improving the
initial draft, and pointed me in the direction of cmd(3) of Inferno.
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