
Acme as an Interactive Translation Environment

Eric Nichols and Yuji Matsumoto
{eric-n,matsu} �at� is.naist.jp

Computational Linguistics Laboratory
Nara Institute of Science and Technology

ABSTRACT

Translation is challenging and repetitive work. Computer-aided transla­
tion environments attempt to ease the monotony by automating many
tasks for human translators, however, it is difficult to design user inter­
faces that are easy to use but that can also be adapted to a dynamic
workflow. This is often a result of a lack of connection between the inter­
face and the tasks that the user wants to carry out. A better correspon­
dence between task and interface can be achieved by simplifying how
software tools are named. One way of accomplishing this to embrace
text as the interface. By providing a simple and consistent semantics for
interpreting text as commands, the Acme text editor [1] makes it possible
to build a system with a text-centered interface. In this paper we explore
the implications this has for translation aid software.

1. Motivation

Translation is an essential and important part of human communication. However, it is
a very challenging task, requiring the translator to have a complete understanding of
and a deep familiarity with the source and target languages. This difficulty is not eased
by the fact that fundamentally it is an inherently repetitive task, consisting of looking up
unfamiliar words and doing large amounts of editing to produce a good translation.

Given these demands, computers provide a good way to ease this repetitiveness by
automating lookup and editing; by converting resources like dictionaries, other transla­
tions, and collections of example sentences to a computer-readable format, lookups can
be performed much faster. Likewise, sophisticated editing languages can reduce the
time and complexity of editing translation results.

The current state-of-the-art for translation aid software, represented by programs like
SDL Trados [2] and Wordfast [3], is an environment similar to a word-processor that is
centered around providing auto-completion of translation candidates based on a user�s
past translations. The typical workflow in environments like SDL Trados is as follows:

1.The source document is stripped of its formatting

2.It is split into "translation segments" � short multi-word sequences that are consid­
ered easier to translate

3.The user translates each segment sequentially

4.The user carries out any post-editing necessary to produce an acceptable translation

5.The document is automatically cleaned up, removing remaining traces of source text

6.The document�s original formatting is reapplied

The interface for programs like Trados may suffice when a user is strictly adhering to
this workflow, translating segments sequentially with little pause for lookup or editing,
however if users deviate from this usage pattern, it becomes difficult to perform other
tasks, such as consulting background material, looking up unknown vocabulary, or per­
forming complex edits. The commands are hard to figure out and remember.

In order to make it easier for the user to figure out and remember how to do something,
the interfaces of the tools provided need to closely correspond with what the user wants
to do. To make the UI correspond, we need to make it easier to identify commands in a
consistent manner.

2. Accessing Χur Tools

Consider some conventional ways of identifying commands. One model of accessing
tools is to use keyboard shortcuts. Keyboard shortcuts can be used to manipulate indi­
vidual applications or to call system commands. Keyboard shortcuts can be fast and
easy to remember for the right key bindings, but fundamentally, they are an obscure
way of identifying commands. As the number of shortcuts increases, so does the bur­
den on the user�s memory. Also, the small number of easy to type shortcuts makes key­
board shortcuts unsuitable for programs that have a large number of actions. Emacs
exemplifies this problem having become so complex that it requires multiple modifier
keys to be held while typing sequences in order to access some functionality.

An alternative to keyboard shortcuts is the use of menus. While clicking a menu entry
may be easier than using keyboard shortcuts, hierarchical menus still suffer from the
same obfuscation problems that plague keyboard shortcuts, only in the case of menus,
users end up classifying their commands in a hierarchy. Another problem with menus is
that they are static in nature; updating the menu layout can confuse users, and, in some
implementations require alteration of the underlying program. This makes menus too
difficult to adapt to changing tasks or workflows.

Where is the consistency in these approaches? Operating systems often provide human
interface guidelines that are intended to provide consistent keyboard shortcuts and
menu layouts across applications. Examples of this are the Command+N and
Command+W shortcuts in Mac OS X for creating and destroying windows. But ulti­
mately, this consistency is difficult to enforce; third party applications often break the
rules, and operating systems, like Linux, that lack enforcement authorities are unable to
maintain a high level of consistency.

One option for identifying commands that we have not yet considered is the plain text
interface. With the advent of GUIs, plain text interfaces are often dismissed as not being
user friendly enough. This bad reputation of the command line is due to the perceived
obscurity of the names of some commands and the inflexible keyboard-only nature of
older terminals.

Figure 1 Translating a Japanese document into English using Acme.
The upper-left buffer contains the source document. Middle-clicking on
the text >lookup that is highlighted in aqua in the title bar of the
upper-left buffer looks up the English translation of each word in the
text highlighted below. The results of the lookup are displayed in the
lower-right buffer. lookup is a shell function defined in the upper-
right buffer. The lower-left buffer contains a translation in progress. At
the top of the buffer is the finished English translation of a Japanese
paragraph. Below that, a paragraph has been divided into tab-delimited
translation units, and a rough English translation has been given below.
At the bottom of the buffer is a Japanese paragraph that has been
divided into translation units by the |chunk command highlighted in
the title bar of the lower-right buffer.

3. Acme for Poets

The Acme text editor and programming environment makes it worth reconsidering plain
text as an interface. In Acme the mouse is used to provide a consistent semantics for
treating text as commands. This echoes the lack of distinction between a program and
data that is common in functional programming languages like Lisp and Scheme. In
terms of user interfaces, this frees the users from having to remember obscure short­
cuts or navigate complicated menus to access their tools; all they need to do is type the
name of the command. This reduces the burden on the user�s memory and makes it
much simpler to carry out the desired action: simply click on the text of a command to
execute it. Acme takes care of interpreting the text as a command by sending a request
to the shell where the requested command is executed and the output is displayed in a
new buffer. An example of Acme in action is given in Figure 1.

This design has some interesting implications. Because any text can be executed as a
command, the user is not limited in terms of what tools he or she can access, keeping
the workflow dynamic and allowing it to easily adapt to the needs of a given task. At
the same time, the clear division in roles � the keyboard for text production, and the
mouse for text interpretation � as well as the clean semantics of the mouse buttons for
select/execute/get provides consistency to the UI. By providing an easy way for text to
be interpreted as commands, Acme combines the command and its interface, removing
the disconnect between what the user wants to do and how it is done. This makes the
UI easier to figure out and remember, and produces an interface that is more suitable
for text-based tasks.

Acme makes applying tools to data as easy as clicking on text with a mouse. Further­
more, the small tools design philosophy that inspired Acme makes it easy to apply exist­
ing NLP tools in Acme. This means that tasks like using reference materials or editing
text are easy. Users who frequently deal with language, such as linguists, translators,
language learners, or poets need to be able to efficiently explore and manipulate lan­
guage. Acme can provide a powerful working environment for users who spend a lot of
time interacting with text.

Acme is clearly attractive for text-heavy tasks like translation, however, some work
needs to be done to produce a usable environment. Tools and intuitive interfaces need
to be constructed for common text manipulation tasks such as splitting a sentence into
words or phrases, looking up words in dictionaries, or translating phrases using transla­
tion memories or machine translation systems. Support for multi-lingual input needs to
be improved: we need redistributable fonts with good Unicode coverage and good input
method editors for handling input and display of text in languages that do not use
Latin-based scripts. Finally, we need a way of getting Acme to the end user in a simple,
easy to install package that works out-of-box.

4. Consistent Text Interfaces for Multi-lingual NLP Tools

The advent of Unicode and the rewrite of the UNIX toolchain in the Plan 9 [4] and Inferno
[5] operating systems with native UTF8 support have made the small tools approach
viable for multi-lingual NLP tools. Here we will show how a simple program for lan­
guage identification can combined with shell functions to provide a consistent
language-independent interface under Inferno for a few common NLP tools that come in
handy during translation. We use Limbo and sh in our examples, but these techniques
are equally as applicable to C and rc on Plan 9.

Consider the task of tokenizing a sentence into words. Many NLP tools, such as the

dictionary search function, lookup in Figure 1, operate on word-level information, so
this task is an essential form of preprocessing for applying them. We will build an inter­
face for the languages English and Japanese since the actual method of tokenization is
very different and illustrates the need for a simple, consistent interface.

The shell function tok_en tokenizes an English sentence by splitting on any punctua­
tion and removing extraneous whitespace. While this approach is sometimes over
aggressive in splitting � hyphenated words and words with apostrophes will occasion­
ally be segmented unnecessarily � it is a simple, easy to implement heuristic.

fn tok_en {
sed 's/([!"#$%&'()*+,-./:;<=>?@[]^_`{|}~])/ 1 /g

s/ +/ /g
s/^ +//g
s/ +$//g'

}

Here is the Japanese equivalent:

fn tok_ja {
tcs -f utf-8 -t euc-jp |
mecab -Χwakati | # suppress PΧS output, tokenizing into words
tcs -f euc-jp -t utf-8

}

Mecab [6] is a Japanese morphological analyzer. It is typically used to tag words in a
sentence with part-of-speech information, but, in the same way wc can be used to
count characters, words, and lines because they are calculated in the same pass, mecab
can be used to tokenize a Japanese sentence, because word boundaries and parts-of-
speech are determined together. The output mode wakati indicates that a sentence
tokenized with whitespace should be returned without part-of-speech information.
Since mecab expects EUC-JP encoded input, we use tcs to convert the Japanese text to
and from Unicode.

We combine tok_en and tok_ja together with the following shell function:

fn tok_any {
args = $*
if {~ $1 -e} { # English

f = tok_en
(lang args) = $args

} {~ $1 -j} { # Japanese
f = tok_ja
(lang args) = $args

} { # Use English as fallback
f = tok_en

}
$f $args

}

where setting a flag determines which language is being processed and calls the appro­
priate tokenizer. If no flag is set, the English tokenizer is used as a fallback.

tok_any acts as a multiplexer, calling the proper language-specific implementation of
a given task based on its settings. Consistent naming and pipe based I/O makes this
possible. It does not matter how different the implementations of the English and
Japanese tokenizers are; they are encapsulated in separate functions, but combined
together they represent a language-independent task.

5. Language Identification

Manually indicating the language each time tok_any is called is inconvenient. It would
be useful to have a way of automatically identifying the input language.

Whichlang is a limbo function similar to Plan 9�s freq(1) that uses a simple charac­
ter frequency based heuristic to identify the language of an input stream of text. Occur­
rences of alphabetical characters or punctuation commonly used in English writing are
counted as evidence for English, whereas occurrences of characters typically used in
Japanese � such as hiragana, katakana, or Han ideographs � are taken as evidence for
Japanese. This is a simple approach that could be improved on, but it can easily be
expanded and will suffice for our current purposes.

whichlang(fd: ref Sys->FD): string
{

EN: con 0; JA: con 1; FLΧΧR: con 0.5;
lang := array[2] of { 0, 0 };
buf := array[256] of byte;
c:= 0;
for(;;) {

n := sys->read(fd, buf, len buf);
s := string buf[0:n];
if(n <= 0)

break;
for (i := 0; i < len s; i++) {

if (s[i] != ' ') {
c++;
case s[i] {

'a' to 'z' or 'A' to 'Z' or
'!' to '/' or ':' to '?' =>

lang[EN]++;
' ' to ' ' or # Asian punctuation
' ' to ' ' or # hiragana
' ' to ' ' or ' ' to ' ' or # katakana
' ' to ' ' or # kanbun
' ' to ' ' or # CJK unified ideographs ext.
' ' to ' ' or # CJK unified ideographs
' ' to ' ' => # half- and full-width forms

lang[JA]++;
}

}
}

}
l := "";
max := 0;
if ((lang[EN] > max) && ((real lang[EN] / real c) > FLΧΧR)) {

l = "en";
max = lang[EN];

}
if ((lang[JA] > max) && ((real lang[JA] / real c) > FLΧΧR)) {

l = "ja";
max = lang[JA];

}
return l;

}

You may notice that many characters in the case statement in whichlang could not be
displayed. This is because they are outside of the Unicode range covered by the fonts
available in Plan 9 and Inferno. We will return to this problem in Section 8.

Turning whichlang into a Limbo module allows our language detection facilities to be
used in any other Limbo program. Writing a wrapper to use whichlang as a stand-
alone program is trivial. Assuming such a program, we can write a shell script that will
automatically set the language flag for any program to the language of its input.

Setlang takes as its first argument the command whose language is to be set. It
determines if it has been called with any manually set language flags, and, in their
absence, it uses tee to cache a copy of the program�s input and pipe a portion to
whichlang for identification. If a language is successfully identified, the language
flag is set accordingly. Finally the command is called with the language flag either set
or omitted entirely.

fn setlang {
args = $*
or {~ $#args 1 2} {

echo 'usage: setlang <command> [-e | -j]' >[1=2]
raise usage

}
(com args) = $*
(and {~ $#args 1} {~ $args -e -j} {

(lang nil) = $args
})
tmp = ${pid}^.tmp
if {~ $#lang 0} {

l = `{tee $tmp | sed 200q | whichlang}
if {~ $wl en} {

lang = -e
} {~ $l ja} {

lang = -j
}

}
if {ftest -f $tmp} {

$com $lang < $tmp
rm -f $tmp

} {
$com $lang

}
}

With setlang we can complete our tokenization interface as follows:

fn tokenize {
setlang tok_any $*

}

Combining setlang with a flag-based multiplexer like tok_any is a powerful
abstraction. The user is presented with a single, simple command that works regardless
of the language of the input and does not require any further intervention. We have
used setlang and the design pattern introduced with tok_any to create interfaces
for several common tasks including dictionary lookup, part-of-speech tagging and
dependency parsing. Figure 1 contains an example of a dictionary lookup interface that
uses the tokenize function. As we can see from this example, these interfaces make
useful building blocks in shell scripts, but they also extend Acme�s interface in meaning­
ful ways.

The examples of whichlang and setlang show how easy it is to use the Plan 9
design philosophy and the tools provided by Inferno to create simple, consistent text-
based interfaces for multi-lingual NLP applications. Clearly, Inferno is an attractive

platform for NLP development, however, the addition of Acme also makes it ideal for the
distribution of NLP services. What is needed is an easy way to get Acme and useful NLP
tools into the hands of the end user.

6. Providing a Translation Environment with Acme SAC

The Acme Stand Alone Complex [7] project satisfies many of our requirements. Acme
SAC is a slimmed-down distribution of the Inferno operating system designed to pre­
sent Acme as a single application. It simplifies the user experience by focusing on
Acme as the interface rather than presenting a full window manager with individual
applications as in the full Inferno distribution. Because Inferno runs in an emulator on
top of a virtual machine, Acme SAC can run on many operating systems without any
external dependencies. Acme SAC�s designer has focused mainly on the Windows ver­
sion, but a Linux version is also available.

Acme SAC simplifies the user experience further by eliminating any installation or setup
process. Users simply download a tarball and run a single application to start Acme.
The first time Acme is started, a new user account with reasonable default settings is
automatically created. Inferno is capable of accessing the local file system, and Acme
SAC mounts and makes it available by default. The os command provides access to host
OS commands, allowing users to continue using any of their existing tools that support
pipe-based I/O, and Acme SAC clients can communicate with Inferno installations, mak­
ing it easy to run commands on remote machines.

To help users get accustomed to the Acme environment, Acme SAC is distributed with a
README that acts as an interactive tutorial thanks to Acme�s dynamic text interpretation
capabilities. Users learn how to use the mouse to select and execute text, how to
browse man pages, and how to use Acme SAC�s IRC client. Every text example is imme­
diately available for exploration to the user.

Our goal is to provide a set of tools that will help our target users group of linguiphiles
work with text. The classic text "Unix(TM) for Poets" [8] by Ken Church can act as an
interactive README for NLP, however, its examples need to be updated for the Inferno
shell, and perhaps, to include text in languages other than English. We are in the pro­
cess of updating it (the new text will be called "Acme for Poets"), however, the lack of
awk and paste commands make some of the examples challenging.

7. Acme SAC for Mac ΧS X

One of our goals is to make Acme available as a translation environment to as many
potential users as possible. To do this, it is important that Acme SAC run on as many
platforms as possible and support I/O in as many languages as possible. Thus, we
decided to package Acme SAC for Mac OS X. Since an Inferno port already exists, pack­
aging was largely a matter of adding the necessary Mac OS X specific files from Inferno
and resolving changes in code that had occurred after Acme SAC branched. There were
some interesting challenges in packaging Acme SAC for Mac OS X and handling multi-
lingual I/O that we will now describe.

Mac OS X applications are typically distributed in a single directory that contains all of
the application�s dependencies. This makes it easy for users to manage; installation and
upgrades consist of simply dragging the application to a desired folder, however, this
caused problems for some of Acme SAC�s settings. For example, by default, Acme SAC
creates its user directories inside of the Acme SAC tree. This is problematic for Mac OS
X because a subsequent install would overwrite all of the user�s data, and it causes

security issues when installed by an administrator. Moving the acme home directory
into the Mac OS X user�s home directory seemed most appropriate, however, it would be
inappropriate to bind /Users/me directly to Acme SAC�s user directory since that
could cause security problems. The solution was to create a special directory in the Mac
OS X user�s home directory called acme-home/ and copy all Acme SAC users files
there during new user creation. This protects the user�s other files in the event that
something goes wrong with Acme SAC. In addition, we bind Acme SAC�s /tmp onto
acme-home/ as well, making Acme SAC�s root directory truly read-only.

7.1. Multi-lingual I/Χ

Input Method Editors and high-coverage, redistributable Unicode fonts are absolutely
essential to our goal of using Acme SAC to provide a translation environment capable of
supporting a variety of languages.

While Plan 9 and Inferno both support limited Unicode character input via modifier keys,
languages that do not use Latin-based scripts often require more sophisticated forms of
managing input. There are native IMEs, such as ktrans[9] , that make input conver­
sion possible in Plan 9 and Inferno, but they are often limited in the scope of languages
covered. In contrast, Mac OS X and Windows both provide IMEs capable of handing a
large number of languages, and can dedicate more resources to improving the quality of
input conversion than a lot of smaller projects can.

For our purposes, the IMEs of Acme SAC�s host OSes also provide the user with consis­
tency; he or she is not required to learn a new method of entering text to do translation
in Acme SAC. Acme SAC�s graphical component is implemented using it�s host operat­
ing system�s native window system API, making it easy to provide IME support in a mini­
mal amount of code in a manner that does not disturb users who do not need the IMEs.
In fact, when we questioned Acme SAC�s creator on how the Windows version�s IME sup­
port was implemented, he was not aware of its implementation at all (personal corre­
spondence). We were able to implement support for the IME in Mac OS X with only a few
dozen lines of code � the majority updating the the Mac encoding of special keys to
their Unicode equivalents.

8. Discussion

With the enhancements to multi-lingual processing we have made by creating consis­
tent, language-independent interfaces using whichlang and setlang and by pro­
viding IME support, Acme SAC has made a lot of progress toward becoming a viable
translation environment. However, there are still some issues we need to consider.

One problem that arises with increased support of languages is that fonts are required
to display them. This problem is well-illustrated in the case statement in whichlang
from Section 5*. There are often legal issues in the redistribution of fonts � the fonts
remain one of the few parts of Inferno that has not been open sourced. Currently, Acme
SAC is distributed with a font that only covers the Latin alphabet and a small number of
special Unicode symbols. This is impractical for a translation environment. We must
find Unicode fonts that cover the languages we want to translate and include them in

* It may be of some consolation to Peter Weinberger�s detached and pixelated face that
the characters in the Unicode class boundary tests are often very rare, and not many na­
tive speakers of Japanese ever use them, but this does not diminish the need for dis­
tributable Unicode fonts of high quality and coverage.

Acme SAC. We have not yet conducted a thorough investigation of the fonts available
for Plan 9, but perhaps approaches like ipa_install [10], a scripts that automati­
cally downloads Japanese fonts in a way that satisfies their license and converts them for
use on Plan 9 and Inferno is an useful approach to help solve the font distribution prob­
lem.

One of the reasons for the widespread adoption of SDL Trados is its ability to let the
user translate popular document formats like Microsoft Word and Adobe Pagemaker,
stripping away the formatting before translation and replacing it afterward. In order to
attract users, it may be necessary to handle translation of such documents as well. The
raises the more general issue of how (if at all) markup should be handled in Acme. Pro­
grams like strings(1) make it possible to extract plain text from Word documents,
but would it be possible to read and write in the Word format without losing formatting
information?

Another asset of state-of-the-art translation aid environments is their support of trans­
lation memories and auto-complete. This starts with dividing the input text into smaller
translation units. Such "text chunking," as it is known in the field of natural language
processing, is easy to replicate with existing tools. Indeed it was one of the first fea­
tures we implemented in Acme. With the text to translated divided into chunks, we
need a fast way of navigating these chunks. Acme SAC�s client wrapper for Charon may
provide some guidance: adding a special client with Prev and Next buttons to move from
chunk to chunk could ease navigation of the document being translated. We will also
need to provide text alignment facilities in order to construct translation memories from
document pairs. Investigating an appropriate way of implementing this in Acme and
Inferno remains an area of future work.

Finally, perhaps the most important question concerns Acme itself. While it is our posi­
tion that Acme�s text based interface simplifies interaction with text by eliminating the
need for nested menus and keyboard shortcuts, we have not empirically investigated
Acme�s learning curve. Thus, answering the question of whether or not one has to
become an Acme power user in order to translate using it is of utmost importance.

9. Conclusion

Acme�s text-driven nature removes the disconnect between tools and their interfaces.
This makes figuring out how to do things more intuitive to the user and reduces the bur­
den on his or her memory. This improves the interface and, in doing so, makes the
user�s job easier. Acme SAC is an ideal means of packaging the Acme environment for
the user. It runs all of the major operating system, requires no setup on the part of the
user, and provides seamless access to tools and data on remote machines. Inferno
makes it easy to provide consistent, multi-lingual text interfaces for completing com­
mon NLP tasks, and it shows promise as a platform for multi-lingual platform for text
processing.. As a first step, we have packaged Acme SAC for Mac OS X and imple­
mented support for its native IME. We also outlined some of the challenges that will
have to be overcome in order to fully realize Acme as an environment for interactive text
manipulation.

10. Acknowledgements

We would like to thank Noah Evans and Uriel Archangel for their feedback and encour­
agement, Francis Bond for his valuable perspective as an NLP researcher, Caerwyn Jones
for creating the program that made this research possible and for the guidance in

getting Acme SAC to compile under Mac OS X, and the many users who provided testing
and feedback on Acme SAC for Mac OS X. Eric Nichols would also like to thank the Min­
istry of Education, Culture, Sports, Science, and Technology of Japan for financial sup­
porting his research.

11. References

[1] R. Pike. Acme: A User Interface for Programmers. Proceedings of the USENIX Winter
1994 Technical Conference, 1994, pp. 223-234.

[2] SDL Trados Technologies. SDL Trados. http://www.trados.com/en/

[3] Wordfast LLC. Wordfast. http://www.wordfast.net

[4] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson, H. Trickey, P. Winterbot­
tom. Plan 9 from Bell Labs. Computing Systems, 38(3), Summer 1995, pp. 221-254.

[5] R. Pike, S. Dorward, et al. The inferno operating system. Bell Labs Technical Journal,
2(1), Winter 1997, pp. 5-18.

[6] T. Kudo. MeCab: Yet Another Part-of-Speech and Morphological Analyzer.
http://mecab.sourceforge.net/

[7] C. Jones. Acme Stand Alone Complex.
http://code.google.com/p/acme-sac

[8] K. W. Church. Unix(TM) for Poets. Unpublished manuscript.

[9] K. Okamoto. Ktrans.
http://basalt.cias.osakafu-u.ac.jp/plan9/s11.html

[10] Tokyo Inferno Plan 9 User Group. TIP9UG JAPANESE FΧNT PRΧJECT.
http://www.tip9ug.jp/wiki/jp_fonts/

