Using The 9P Protocol In High-Performance Computing

Latchesar lonkov
Andrey Mirtchovski
Los Alamos National Laboratory*
{1lionkov,andrey}@lanl.gov

ABSTRACT

The 9P protocol, with its greatly reduced complexity, allows many different types of
resources to be accessed as files over several different types of connections. It allows
programmers to implement interfaces, which enable parts of a cluster to communicate as
if they were connected directly. In this paper we describe the use of the 9P protocol as
the main communication protocol between various components in heterogeneous clusters.
We discuss the properties of 9P that allow us to write small but efficient communication
libraries and to optimize them for the different transports available on the cluster. We
describe several such transports and discuss algorithms, specific implementation details
and performance results.

1. Introduction

Today's clusters are evolving from simple commodity compute nodes connected together via
a standard network, to nodes comprising of a multitude of CPUs, computational accelerators
and graphics processing units. The computational units in these clusters have different ar-
chitectures (CPUs, GPUs, Cell Broadband Engine [5] [10] processors) and are using different
interconnects (Ethernet, Infiniband, PCl Express, Element Interconnect Bus). The clusters are
no longer homogeneous where a computational node is connected to every other node via a
single interconnect.

This amalgam of different communication protocols increases the complexity of the software
stack that will be run on a heterogeneous cluster. The most popular approach for current sys-
tems software is to hide the interconnect/computational differences using specialized libraries.
For example, a distributed program consists of multiple programs running on the central pro-
cessing unit and using Ethernet/Infiniband for communication. The programs themselves use
libraries to offload some of their computations to GPU/Cell BE/FPGA units using PCl Ex-
press. In the case of the Cell Broadband Engine, the computation is further offloaded to its
Synergistic Computational Units.

The use of heterogeneous interconnects and computational units makes it difficult to create
cluster management software that allows effective control and monitoring because of the many
different components that are involved. In order to reduce complexity, we are building a
framework that allows us to speak with any computational component on a heterogeneous
cluster via a simple file-based interface. This approach allows hiding the particularities of the
interconnect topology when it is not important and yet expressing it, as well as the capabilities
of the computational nodes, in the hierarchy of files when required. Our libraries fit in all
areas of the cluster, from the end-user desktop to the Cell computational accelerator. All
protocol communications are optimized for the various underlying transports with all access
to the cluster's components occurring via POSIX-like file operations such as open, read and
write.

2. Examples of Heterogeneous Cluster Architectures

The trend towards heterogeneous clusters has been well established in today's HPC environ-
ments. Organizations such as Los Alamos National Laboratory are building clusters to serve

*LANL publication: LA-UR-07-7865

different needs of various fields of science. In order to achieve high performance, these clusters
must necessarily utilize hardware technology best suited for the particular task. In fact, we
are seeing more and more dedicated solutions provided by vendors such as IBM to serve a
particular science task (bioinformatics and biotechnology, for example) which are not usable
for general computing needs. Moreover, the next generation of standard "homogeneous” clus-
ters will most likely include several different accelerators which do not fit the general mode of
operation of the CPU, such as Graphics Processing Units (GPUs), Field-Programmable Gate
Arrays (FPGAs) and others, which work in conjunction with the CPU to accelerate specialized
computations.

Naturally, LANL, an organization which prides itself on being on the cutting edge of science,
is taking steps to discover new, faster methods for performing scientific computation. Below
we discuss several efforts to bring heterogeneity to high-performance computing: the Usable
Supercomputer, the RoadRunner cluster and the yet unnamed cluster built at the Advanced
Computing Lab at LANL.

2.1. Usable Supercomputer

The term Usable Supercomputer denotes an attempt by the computer science division of Los
Alamos National Laboratory to simplify and reduce the efforts required to port existing code
between successive generations of supercomputers.

The goal of High Performance Computing is to extract the maximum performance from the
currently fastest hardware. In order to do that, more often than not the solution is to optimize
code that will be running for a particular architecture and couple it very tightly with the
hardware. Such tasks are not trivial and require great amount of knowledge of both the code
and the hardware it will be running on. In some cases as much as half of the operational time
of a supercomputer or an HPC cluster has been spent tinkering and optimizing code that will
be run on it. Indeed, once a particular application has achieved what is considered maximum
performance for a particular architecture, it is very compelling to continue employing that
architecture even after new, faster hardware becomes available, thus saving porting effort and
time.

In an effort to reduce the time between porting applications to the next fastest hardware,
the Usable Supercomputer will attempt to create a framework that allows applications to
be moved from one hardware configuration to another with minimal rewrite. In essence,
Usable Supercomputer does not apply to heterogeneous clusters (although the next section
will discuss their inevitability), but rather attempts to deal with the generational differences
between successive HPC architectures.

Our effort in Usable Supercomputing will be at the systems communication level. We will
present the 9P protocol [6] as a viable solution to the problem of micro-optimizing systems
software communications to work on a particular interconnect. By moving system-related
communication over to 9P we are free to optimize for the underlying interconnect without
having to modify the protocol itself with each new architecture. The introduction of 9P
does decrease performance by increasing communication overhead versus direct communication
optimized for the interconnect (our measurements suggest 10 to 15 percent for the Cell's DMA,
for example) we are confident that overall there will be an increase in productivity.

2.2. RoadRunner

RoadRunner is the next generation supercomputing cluster currently being built at LANL. It is
the biggest system in existence to employ both general processing units (AMD Opteron nodes)
as well as computational accelerators (IBM's Cell Broadband Engine [4]). RoadRunner can be
considered the first fully heterogeneous cluster: it utilizes four different interconnects, three
different types of processing units, two byte orders, two different operating systems and at
least two different memory models. Below we list some of the components for RoadRunner:

CPU Types:

e 64-bit, x86 descendant AMD Opteron; also usable in 32-bit legacy mode for running
32-bit applications

o 64-bit Power PC processing unit for the PPU of the Cell Broadband Engine
e 128-bit Synergistic Processing Unit for the Cell SPE, which is expected to bear the brunt

of the computations for RoadRunner
Interconnects:

e Cell DMA Engine, facilitating communication between the PPU and the SPEs of the
Cell

e PCl-e bus between the Cell and the Opteron’s motherboard
e Infiniband network between the Opterons

o Gigabit Ethernet or 10-GigE for connecting between the cluster's head nodes and desk-
tops

Operating Systems:

e Opteron nodes run a 64-bit version of the Linux operating system for the x86 architecture
(aka x86_64)

e Cell BE PPU nodes run a 64-bit PowerPC version of the Linux operating system (aka
PPC). It is unclear as of this writing whether the two OSs can be synchronized

e Cell BE SPE units can not run an operating system. Instead, software running on them
must be initialized by the corresponding PPU for that Cell blade

There are several possible ways of writing and deploying code for this cluster, all of them
stemming from the fact that its architecture is heterogeneous and currently no software exists
that can successfully combine all of RoadRunner’s components into a single application. All of
the methods listed below, excluding the most basic one, running it as a legacy homogeneous
cluster, will require major rewrites of existing code:

e Legacy Homogeneous Cluster: using only the Opteron parts, code written for older
clusters could simply run on RoadRunner without modification, utilizing perhaps an
MPI library for intra-node communication over Infiniband. In this form the accelerator
components of each Opteron node, the Cell blades are unused.

e A cluster of accelerators: programs can use only the Cell BE accelerators to perform
computation, using the Opterons as a staging environment. This involves a significant
effort in designing communication libraries that can connect Cells over the Infiniband
interconnect with minimal interference from the Opterons

o A mixed Opteron-Cell cluster: using the strengths of both the Opteron CPU and the
Cell Broadband Engine, programs can employ them together for different parts of the
computation cycle. This will involve an even greater effort in designing and implementing
libraries that deal with bit ordering, communication over different interconnects and
rewriting existing science applications to use the new libraries. On the systems side of
things, resource administrating software will need to be optimized for speedy delivery
of information and data in order to keep up with the computation. This arrangement,
however difficult it is to achieve, has the biggest potential for increasing the cluster’s
performance closer to the theoretical limit for RoadRunner.

2.3. Other efforts

We are building a yet-unnamed cluster at the Advanced Computing Lab at LANL. The cluster
will serve as a testbed for various groups within the lab and will attempt to expose programmers
to a fully heterogeneous environment containing even more different hardware components
than RoadRunner. The cluster comprises of 32 nodes each equipped with one or more multi-
core CPUs, with each node connected to one or more Graphics Processing Units (GPUs) and
FPGA boards. While the authors doubt that this cluster will enable the emergence of the sort
of super-accelerated applications able to use FPGAs, GPUs, CPUs and other, yet uninvented

accelerators concurrently, we are nonetheless convinced that this cluster is a step forward in
understanding and enabling synergies in a heterogeneous computational environment.

The variety and increase in different hardware architectures in heterogeneous environments
pose a significant problem for those willing to employ them: both from the systems side
(making them run) as well as the applications side (making them crunch numbers fast). As
the Systems Software team at LANL, we are tasked with developing software which maintains
a sound environment for job starting, data movement, monitoring and control of applications.
The following sections will discuss our attempt to find a unified framework which works in a
heterogeneous environment without overly hampering performance.

3. Representing System Resources as Files

In time honored tradition we have chosen the path to unifying the cluster control and infor-
mation devices to follow that of Plan 9 [11], i.e., all resources to be presented and accessed as
files. In doing this we have simplified greatly the creation and access to interfaces across the
entire heterogeneous cluster, throughout its entire operation. We are using (or are planning
to use) 9P to boot the cluster, to access it for job start-up over Ethernet and Infiniband, in
computing libraries of the Cell SPEs and over the PCl Express bus for communication between
the Opterons and the Cell processors.

Some of our implementations include:

3.1. Xbootfs

Xbootfs is a scalable 9P based protocol for distributing boot images in a cluster. The boot
server serves the boot images (eventually different for the different architectures). The scala-
bility is implemented by using the clients as temporary, second-tier boot servers. When a client
connects to the boot server and gets its image via 9P, instead of continuing the boot process,
it registers itself with the server as secondary boot server. When another client connects to
the server, instead of serving the file directly, the server redirects it to one of the second-tier
servers. After serving its time (usually 5 seconds) the secondary server unregisters itself and
continues the boot process. Xbootfs was written by Ron Minnich and Li-Ta Lo.

3.2. XCPU

XCPU [8] uses a file system hierarchy of directories and files to export functionality from the
compute node of a cluster in a way that allow it to be imported and viewed locally from one or
more head nodes. XCPU provides a file interface for creating new jobs, fast distribution of the
files necessary for the jobs work, control and monitoring of the job progress. XCPU supports
heterogeneous clusters allowing the compute nodes and/or the head node to be of different
architectures.

XCPU allows administrators to be very flexible on how the compute nodes will be configured. It
allows splitting a single cluster into multiple small logical clusters, or merging multiple clusters
into a single logical one.

XCPU nodes are mountable on the local Linux machine via the VOFS [2] [9] kernel module,
allowing job starting and monitoring to be performed via standard UNIX shell commands and
tools such as cp, cat, 1s and tail. Figure 1 shows a possible configuration of several clusters
mounted in a grid-like environment on a single node.

3.3. CellFS

The Cell Broadband Engine [10] is a new architecture aimed at providing high-performance
computational facilities for scientific and media applications. Even though the Cell BE was
designed initially for the gaming industry and specifically for Sony’s PlayStation 3 game console,
Cell computers have been embraced by the scientific community for their potential to deliver
high-performance throughput to certain applications.

The Cell achieves its performance by utilizing two different types of computational units: a
Power Processing Element (PPE) and eight Synergistic Processing Elements (SPE) [3]. The
operating system and user programs run on the PPE, while the 8 SPEs are used to offload
specific computations.

The SPE implements a SIMD instruction set that is optimized for computationally intensive

applications. It has 128 128-bit registers and 256 kilobytes of local store. The local store of
the SPE is the only memory accessible directly by the load and store operations of the SPE

/mnt/xcpu/
clusterl/
nodel/
sessionl/
cluster2/
nodel/
sessionl/

node2/
cluster3/
nodel/
sessionl/

Figure 1: A constellation of XCPU-enabled clusters mounted on a single head node

instruction set. The size of the local store is further limited by the fact that it also stores the
code of the currently executing program. This is the main limitation of the architecture: every
access to main memory on the Cell needs to be explicitly scheduled. Programmers need to
balance between how much code can be put on the SPE and how much data this code will
have to work with.

The SPE uses asynchronous, coherent direct memory access (DMA) transfers to access the
main memory, with memory address translation controlled by the PPE. There is support for
up to 16 outstanding DMA requests on each SPE. DMA is programmed either by instructions
executing on the SPE, by preparing DMA lists, or by inserting commands in the DMA queue
from another processor (usually the PPE).

CellFS presents the CellBE resources (main memory, file system, etc.) as files. If a program
running on the SPE needs to read data from the main memory, instead of issuing a DMA
request, it reads from a file that represents the memory region. If it needs to send data to the
PPE, or another SPE, it uses a pipe file. The model is flexible enough to allow access from the
SPE to memory and other resources imported by the PPE from other nodes. For example the
SPE can transparently read/write to the main memory of an Opteron node, or use the XCPU
file interface to launch a job on another Cell processor.

3.3.1. CaellFS Devices

Depending on the underlying storage we define five filesystems (listed in table 1) that are
served by the PPE. Contingent on the prefix used with the full file name, different backing
stores will be used to read or write the data associated with the file.

Most commonly used ones are #r and #U.

Code running on the SPEs accesses this file system via library calls corresponding to normal
POSIX file operations. The following code opens a file named test in directory /tmp on the
main file system of the Cell (presumably associated with a partition on the Cell's hard drive)
and writes “num” bytes of “data” to it starting at offset 0:

fd = spc_open("#U/tmp/test");

Name and type Description

F#Hr File server representing areas in main memory as files

#U File server allowing operation on files existing on the UNIX file
system accessible by the PPE. Files served by #U are mmap()-ed
to main memory to increase 1/O bandwidth

#R Similar to #U, but changes to the files are not propagated to
the disk. This is equivalent to a read-only file system, however it
allows the SPEs to communicate data between each other as the
computation progresses

#p Clients can use this file system to create a named pipe which
can be used to communicate between clients running on different
SPEs.

#I Log file system used by lightweight library routines replacing
printf ()

Table 1: File systems served by the PPE

spc_write(fd, data, num);
spc_close(fd);

Our model is easily extensible to provide access to more resources if necessary. Our tests show
that we can achieve reasonably good performance for access to main memory of the Cell. This
approach combines simplicity, very important when memory is limited, with extensibility.

3.3.2. Asynchronous execution

In order to use the SPE effectively, data transfer must not block the flow of the computation,
i.e., the execution of code and I/O must overlap. There are two approaches for interface
design that achieve the requirement: asynchronous I/O and multiple executions threads. The
asynchronous 1/O model has been experimented with in the double- and triple-buffered pro-
gramming modes, but for a complete solution an implementation of an interface similar to
POSIX Asynchronous 1/O [7] must exist. We decided to implement a simple coroutine model
that allows more than one function to run independently on the SPE since we believe that we
have found a model simpler to implement and understand than asynchronous |/O. Our model
does not require locking of information and provides completely deterministic execution even
in the presence of multiple coroutines with overlapping |/0O.

Fully deterministic coroutine execution is accomplished by allowing context switches to occur
only on predefined places in the program’s code. Whenever the running function performs an
[/O operation, the library initiates the transfer to or from the PPE and passes the control
to a different coroutine running on the same SPE. In order to keep both the interface and
implementation simple, the switch between the coroutines can occur only when a function
from the |/O interface is called. The fact that the switching points are known in advance
requires no locking of data and greatly simplifies programming for the developers. We have
borrowed this threaded model from Plan 9, where coroutines have been used successfully to
implement various heavily used multi-threaded applications.

Coroutines are created similarly to POSIX threads. The mkcor () function receives a function
pointer, parameter pointer and stack buffer pointers and handles the set-up stage for the new
coroutine. A new coroutine is not immediately scheduled, but is put in a FIFO queue. The
following code creates a coroutine with a stack size of 4096 bytes which prints a greeting.

char stack[4096];
void
cor(void *arg)
{
spc_log("hello world\n");

void
cormain()

{
b

mkcor (cor, NULL, stack, sizeof stack);

Figure 2(a) provides an example of the coroutine scheduling that may occur on an SPE with
two coroutines.

* signal received * ﬁ

Get Event

DMA get~_"9 DMA put
done done

yes yes

Put coroutine in
ready state

T —
Send message to coroutine scheduled*

outbound mbox with
9P LS pointer and

Create 9P message

Start DMA get
request to get 9P

Decode 9P Send notification
message

message signal

Decode 9P

size
message * *
* = Perform work I ' Free resources |~
Put coroutine in
waiting state Return result
Create 9P
response
Schedule another

coroutine or wait for Start DMA put
notification S P E request to send

response PPE

(a) SPE Coroutine Scheduling (b) PPE Workflow

There are several benefits of the coroutine model. Unlike threads or normally-scheduled OS
processes, coroutines execute completely deterministically, thus removing the need for locking
or mutual exclusion. The coroutines can share all variables defined in the SPE code as long as
they do not try sharing the memory areas for which DMA may be in progress.

A disadvantage of the coroutine model is that it requires separate state to be kept and stored
on the SPE for each coroutine.

4. 9P Transports
4.1. Element Interconnect Bus

Element Interconnect Bus (EIB) connects all elements within the Cell BE. It allows the elements
to issue DMA requests, or send messages over message boxes. We use DMA requests and
messages to implement the 9P transport. The client (running on the SPE) prepares the 9P
message in its local store and sends a 32 bit message with its address to the PPE. The PPE
issues a DMA request to transfer the message from the SPE local store to the main memory.
The PPE then decodes the messages and executes the requested operation. Then a response
is ready, the PPE issues a DMA request to transfer it to the same address in the SPE’s local
store and notifies the SPE via a signal.

4.2. Ethernet
We use the standard TCP/IP transport over Ethernet.

4.3. Infiniband

We use the standard TCP/IP transport over Ethernet. Also we are planning to implement an
optimized transport using verbs directly.

4.4. PCI Express

Some Cell BE boards can be connected to a computer via PCl Express bus. The Cell BE boards
have a DMA engine that allows operations similar to the one the EIB has. The implementation
of the 9P transport over PCl Express to the Cell boards is a work in progress.

5. Tying it all together

Representing the computational nodes resources as files gives the cluster designers greater
flexibility on how to combine and expose the cluster resources to the users. Exporting a XCPU
tree to the SPU programs can give them the ability to start jobs on Opteron nodes over Infini-
band. Or start computation on a GPU. For heterogeneous clusters it allows the designers to
provide different views of the cluster that are independent of the actual interconnect topology.
A heterogeneous cluster comprised of Cell BE nodes connected via PCle to Opteron nodes
which are connected via Infiniband can be presented as a Cell BE only cluster, as an Opteron
cluster or as a heterogeneous cluster. The users that have Cell BE only application can use the
Cell BE only view and their code doesn’t have to be aware of the PCle-to-Opteron routing.

The ultimate goal of our work is to allow the end user or application to interface to all
components of a heterogeneous cluster that they need to in order to accomplish their work,
without having to deal with the actual hardware components and interconnects involved. In
essence, an end user or application should be able to "turn on” and "tune in” to only those
parts of the cluster that they're interested in, circumventing the underlying hardware. Our
implementations of 9P over the various interconnects of RoadRunner and the corresponding
libraries and servers needed to access them allow programmers to employ a gigantic (by today’s
standards) machine such as RoadRunner in all the possible modes that we listed in section
2. A cluster of a thousand Opteron nodes, or a cluster of 2000 Cell processors should look
identical to an end application.

6. Performance implications from moving to 9P

We have evaluated the performance of several of our components and have found that the
slowdown compared to industry leading software is sufficiently small to warrant choosing our
framework over more complex, albeit better optimized code.

6.1. XCPU

Our test benchmark, the code that we always attempt to outperform, is B-Proc [1]. There are
two reasons for this: one is that as far as we know, B-Proc is the fastest cluster management
system running on production clusters [12], and secondly, B-Proc is deployed on over ten
thousand compute nodes on the Los Alamos National Laboratory clusters. If we want to
create a replacement for B-Proc we must deliver similar, if not higher performance.

The results published in tables 2 and 3 are from Xcpu runs on SparkPlug, a B-Proc cluster
consisting of 32 dual Opteron nodes with 1.8GHz processors, connected via Myrinet. Results
summarized in table 2 are from runs performed on Blue Steel, a 256-node Opteron cluster
connected with Infiniband. Of the 256 nodes we were allowed to run on 245. Both clusters
are currently running B-Proc, with the ability to enable XCPU concurrently for testing. The
times reported here are averaged from 1000 timed executions. We varied the number of nodes
connected to and the size of the binary copied to the remote node.

Binary Size | B-Proc (seconds) | XCPU (seconds)
31 25

64KB .

1MB 4.6 7.3
8MB 5.0 135
16MB 55 20.3

Table 2: Tree-spawn results for B-Proc and XCPU on 245 Infiniband-connected nodes

We interpret these results to indicate that the Xcpu model scales well, even if it is not as fast
as the predecessor it replaces. Our start-up algorithm is based on a tree-spawn method which
offloads the bulk of the workload from the lead node onto the compute nodes, thus reducing
the load on both the network and the file system up front.

8 nodes
16.nddes ———-
.26 nodes -------

execution time (seconds)

et T 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
binary size (KB)

Figure 2: Execution time for a single binary execution on varied number of nodes

6.2. CellFS

In order to evaluate the performance of the proposed programming model, we created two
benchmarks. We run them on a Cell blade system that contained two 3.2GHz Cell processors.

The first benchmark tests the maximum memory bandwidth that can be achieved. The SPE
program opens a 128MB file stored on the Unix file system, then creates a number of coroutines,
each of which reads and writes 16777216 8K blocks from the files. As mentioned in the previous
section, the regular Unix files are mmap-ed when accessed from the SPE, so after the initial
page faults that bring the file content to the memory, reading from the file is equivalent to
accessing the main memory. We tested the program running on different number of SPEs and
coroutines.

Table 3 shows the results of running the memory bandwidth benchmark. The memory band-
width we achieve is much lower than the theoretical maximum. We believe that the main
reason for that is that we don't use HugeTLB.

SPE | DBL # Coroutines
1 2 3 4 5 6 7

1 8.19 5.68 | 10.63 | 10.71 | 10.75 | 10.81 | 10.78 | 10.79
2 15.59 || 11.03 | 20.48 | 20.74 | 20.79 | 20.88 | 20.89 | 20.96
3 20.05 || 14.75 [23.20 | 23.26 | 23.27 | 23.28 | 23.29 | 23.28
4 20.48 || 17.84 [23.28 | 23.20 | 23.32 | 21.84 | 23.32 | 23.32
5 21.63 | 20.71 | 23.26 | 23.27 | 23.28 | 23.28 | 23.28 | 23.29
6 21.82 || 21.89 | 23.26 | 23.25 | 23.26 | 23.26 | 23.26 | 23.26
7 23.05 || 21.05 [23.24 | 23.23 | 22.05 | 23.23 | 23.24 | 23.23
8 2234 |1 2143 1232212320 [2321 [23.21 | 2321 | 23.21

Table 3: Memory Bandwidth (in GB/s) for various numbers of active SPEs and Coroutines,
as well as the benchmark double-buffered code

The second benchmark is a modification of the IBM optimized matrix multiplication workload
(src/workloads/matrix.mul directory in Cell SDK 1.1). We left the optimized functions
Matlnit_MxM and MatMul_MxM intact, changing only the logic that reads and writes the
blocks. Instead of implementing double-buffering model by issuing DMA transfers directly, our
implementation uses two coroutines that each calculates half of the blocks assigned to the

6 512 KB
r 1024 KB~~~
2048 KB -~
" 4096 KB~~~

8192 KB

execution time (seconds)

number of nodes

Figure 3: Execution time for various binary sizes

SPE. The initial data of the A and B matrices is stored in regular Unix files and the result of
the multiplication is also stored in a regular file. In order to have fair comparison we modified
the original matrix multiplication program to read the content of A and B from the same files
instead of generating it on the fly.

The main function opens the files containing the matrices data, then creates two coroutines
that do the actual multiplication:

static void

mmulcor (void *a)

{
int i, j, k, blkid;
char *ename;
Ctx *ctx;

ctx = a;

for(blkid = ctx->blkfirst; blkid < ctx->blklast; blkid++) {
i (blkid >> shift) & mask;
j (blkid) & mask;

block_read(ctx, i, j, 0);
MatInit_MxM(ctx->c, ctx->a, ctx->b);
for(k = 1; k < (N/M); k++) {
block_read(ctx, i, j, k);
MatMult_MxM(ctx->c, ctx—>a, ctx->b);
}

block_write(ctx, i, j);
}

static int
block_read(Ctx *ctx, unsigned int by, unsigned int bx, unsigned int idx)
{

int sz;

u64 offa, offb;

offa = 4x(by*MxN + idx*MxM) ;
offb = 4% (bx*M*M + idx*M*N);
sz = sizeof(float) * M * M;

spc_pread(afd, (u8 *) ctx->a, sz, offa);
spc_pread(bfd, (u8 *) ctx->b, sz, offb);
return O;

}

static int
block_write(Ctx *ctx, unsigned int by, unsigned int bx)
{

int sz;

u6d offc;

sz = sizeof(float) * M * M;

offc = 4 * (by*M*N + bx*M*M) ;
spc_pwrite(cfd, (u8 *) ctx->c, sz, offc);
return O;

}

Table 4 shows the results of running the original and the modified applications for tables of
the specified size. The results indicate that the slowdown incurred by using our libraries is
between 10% and 16% for medium-sized matrices. Figure 4 plots the slowdown as a function
of the matrix size and the number of SPEs used in the computation.

7# SPE 256x256 512x512 1024x1024
CellFS | Std. | CellFS | Std. CellFS | Std.
1765 | 1556 | 141.43 | 124.22 | 1131.98 | 993.00
8.85 781 [70.75 6216 |566.38 | 496.71
4.45 391 [35.46 |31.09 |283.36 | 248.40
2.28 198 | 1788 | 1557 | 14254 | 124.29

Q0| [N[H

Table 4: Time to run 10000 multiplications of two single floating point matrices of the specified
size

7. Conclusions

We have presented our view for the future deployment of the 9P protocol in High Performance
Heterogeneous computing at the Los Alamos National Laboratory. We expressed our hope,
that by using a single, standard protocol, we can reduce the complexity of interconnecting and
interfacing between the various components and accelerators arriving with the next-generation
HPC clusters.

We presented performance results for various of our framework components and expressed
satisfaction with the fact, that replacing complex, highly optimized libraries with a simpler,
easy-to-write-for file-based interface does not impact performance unnecessarily badly.

References

[1] Sung-Eun Choi, Erik A. Hendriks, Ronald G. Minnich, and Matthew J. Sottile. Life with
ed - a case study of a linuxbios/bproc cluster.

[2] Latchesar lonkov Eric Van Hensbergen. The vOfs project. http://v9fs.sourceforge.net.

[3] B. Flachs, S. Asano, S. H. Dhong, H. P Hofstee, G. Gervais, R. Kim, T. Le, P. Liu,
J. Leenstra, J. Liberty, B. Michael, H.-J. Oh, S. M. Mueller, O. Takahashi, A. Hatakeyama,
Y. Watanabe, and N. Yano. The microarchitecture of the streaming processor for a cell
processor. In IEEE International Solid-State Circuits Conference, pages 184-185, 2 2005.

17
256x256 ——
512x512

1024x1024 -

16
15

7 T et e

Slowdown (%)
|
|
|

18 |

1|

10 ‘ :
1 2 4 8

SPEs participating in computation (log)

Figure 4: CellFS Slowdown vs Standard Double-Buffered Algorithm for Matrix Multiplication

[4]
[5]

[6]
[7]
[8]
[9]

[10]

[11]

[12]

IBM. Cell broadband engine architecture, version 1.0, 2005.

J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Mauerer, and D. Shippy.
Introduction to the cell multiprocessor. IBM J. Res. & Dev., 49:589-604, 2005.

AT&T Bell Laboratories. Introduction to the 9p protocol. Plan 9 Programmer’s Manual,
3, 2000.

The POSIX Asynchronous 1/0 Library Manual. At
http://www.opengroup.org/onlinepubs/009695399/toc.htm.

R. Minnich and A. Mirtchovski. Xcpu: a new, 9p-based, process management system for
clusters and grids. In Cluster 2006, 2006.

Ron Minnich. VO9fs: A private name space system for unix and its uses for distributed
and cluster computing.

D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C. Johns, J. Kahle,
A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak, M. Suzuoki,
M. Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, , and K. Yazawa. The de-
sign and implementation of a first-generation cell processor. In Custom Integrated Circuits
Conference, 2005.

Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson, Howard Trickey,
and Phil Winterbottom. Plan 9 from Bell Labs. Computing Systems, 8(3):221-254,
Summer 1995.

Gregory R. Watson, Matthew J. Sottile, Ronald G. Minnich, Sung-Eun Choi, and Erik A.
Hendriks. Pink: A 1024-node single-system image linux cluster. In HPCASIA '04: Pro-
ceedings of the High Performance Computing and Grid in Asia Pacific Region, Seventh
International Conference on (HPCAsia'04), pages 454—-461, Washington, DC, USA, 2004.
IEEE Computer Society.

