
Op: Styx batching for High Latency Links

Francisco J. Ballesteros, Gorka Guardiola, Enrique Soriano

Rey Juan Carlos University, Spain
{nemo,paurea,esoriano}@lsub.org

Spyros Lalis

University of Thessaly, Greece
lalis@inf.uth.gr

ABSTRACT

We are designing an operating system based on Inferno, which central­
izes everything on a machine we call the PC. Terminals connect to it
through the internet to export local devices and viewers and programs
wrapped in Styx file servers. The problem this approach faces is that Styx
behaves badly for high latency links, no matter what the bandwidth is
because of the RPC round-trip time accumulation. We have implemented
a new protocol, Op (Octopus Protocol), which reduces drastically the num­
ber of RPCs needed for the operations and so behaves well for high
latency links. Furthermore, we have implemented a client and a server
that can be used to interconnect different Styx islands in a transparent
way, keeping all other software unaware of the new protocol. The ideas
here could be used, for example, for the Plan 9 sources at Bell Labs, in
order to make upgrades much faster across the internet.

1. Introduction

It is well known that Styx and 9P behave badly for high latency links. In this article we
focus on Styx because our protocol is implemented around it, but anything said here
about Styx also applies to 9P. Even for simple operations, Plan 9 and Inferno issue a
great number of RPCs. An RPC issuer waits synchronously for the responses before
issuing new RPCs and so, the latency is accumulated, making the file system very unre­
sponsive, especially for interactive use.

We are building a system called Octopus [2]. In Octopus, all the applications run on a
central machine, the PC, connected to the internet. In principle, the PC can be any
machine (we use Plan B and Inferno combined). Terminals are intended to run on a
hosted Inferno instead. The aim is to use any machine nearby, no matter its OS, as a ter­
minal for the octopus. We use Inferno programs to wrap terminal devices and applica­
tions installed in the underlying system. They are exported as devices, via file systems
which are mounted by the PC to be controlled by the applications running on the PC.
These applications keep all the state and the session as the user moves around. Every­
thing exported by the terminal is mounted as a file system through the network, which
means that responsiveness of the system heavily depends on the file system

responding fast. For high latency networks, using Styx proved unusable for us, so we
needed a file system protocol which would behave well under bad latency.

Before anything else, we must make explicit what we mean by �high latency links�. One
example of this is the 120ms of RTT for ICMP (using ip/ping) we get while at our
homes through an ADSL connection to the server in our University. Another example is
the 118 ms of RTT (also of ICMP) we get while reaching the Plan 9 sources at Bell Labs
from our University.

File system protocols capable of handling such latencies are feasible, as demonstrated
constantly by the web. In principle, a single RTT could suffice to fetch a file (if there is
no bandwidth problem and the underlying network stack permits it) or to put a file into
a remote file server.

Before undertaking the construction of the protocol described here, we considered sev­
eral alternatives. One was to make changes to Styx following suggestions made at the
IWP9 2006. Another one was using approaches similar to LBFS [5]. In the end we had to
build our own protocol for reasons we describe later. We did so in a way that permits
Inferno systems (hence Plan 9 systems) to bridge across high-latency network links in a
(mostly) transparent way. By taking this approach, all programs can be kept without
modification, speaking Styx when necessary and using the current standard file system
interface.

The resulting implementation can be useful without the rest of the Octopus. For exam­
ple, it could be used to make it more convenient to browse or work on remote Plan
9/Inferno systems. Indeed, this has been the primary use of the implementation
described here, because the Octopus is not yet ready for daily use.

A known drawback of Op which comes as a direct consequence of its design is that files
not behaving as proper files may not work. Two examples of this are OEXCL files of
which the cache is not aware of, and clone files. Making the cache aware of OEXCL files
is easy enough if one is willing to pay the performance price. Clone files are more com­
plex because of the way the system is implemented as will be explained later.

2. Altering Styx

A proposal has been made to modify Styx to support batching of RPCs. The idea behind
this approach is that the client can send RPCs using the same tag without waiting for the
answers. The server would then group logically the responses. For example, an error in
the first RPC would mean that other requests in the same batch could be ignored. The
problem with this approach is that many programs have to be modified. This includes
both clients and servers.

A batching client would be needed or the client system would simply issue Styx requests
serially, adding up RPC latencies. A batching server is needed to honor the convention
that requests with the same tag depend on previous requests within the batch to suc­
ceed.

How to implement that client is not even clear. The problem is to determine what and
when to batch. For example, two new system calls (or library functions) could be added
to put and get a remote file (as we did on Plan B). However, programs not written to
use the new calls would still use series of blocking RPCs.

A better alternative would be to implement a batching file system for the client machine,
providing a conventional Styx server, but trying to batch requests. This requires some
caching in the client, otherwise there would be no batching in practice; because individ­
ual requests from the client system would be forwarded one by one to the server unless

they can be satisfied by data from a cache within the client.

Regarding the server side, a similar issue arises. Instead of modifying all the servers, a
single batching server can be implemented. Such server would honor the Styx batches
and issue individual file system requests to the actual servers.

Figure 1 depicts the scenario described so far. After considering it, the approach to
implement the simplest protocol needed to interconnect the batching client and the
batching server arises naturally (instead of implementing a more complex Styx). In the
next section we describe such protocol.

client
system

Styx batching
client

Styx
(batching)

batching
server

Styx
server

...

Styx
server

Figure 1: A discarded alternative: Batching clients and servers for a modified Styx

3. The Octopus Protocol: Op

Op follows many conventions used in Styx. We will focus here mainly on the differences,
although we will also repeat many details taken verbatim from Styx to make the descrip­
tion easier to read. A more detailed description of the protocol and some evaluation
measurements are available elsewhere [1]. In Op, the combination of sending (receiv­
ing) a request and receiving (sending) a reply is called a transaction, but in some cases,
a single request may imply multiple replies. There can be a single client or multiple
clients sharing the same connection, but all of the clients operate on behalf of the same
user. It is assumed that the communication link preserves the order of messages sent
through it.

Op messages are shown in figure 2. They are encoded using the same conventions of
Styx [6]. Each message starts with a size field specifying the size of the entire message.
Next comes a byte stating the message type. A tag field is used to refer to outstanding
requests and to match replies to requests (like in Styx, but in Op there can be multiple
replies for a single request). Each T-message has a tag chosen and used by the client to
identify the message. The reply (or replies!) to the message has the same tag. The rest
of the message depends on the type. In the figure, the number of bytes in a field is
given in square brackets after the field name. The notation parameter[n] represents a
variable-length parameter, encoded as n[2] followed by n bytes of data. The notation
string[s] is shorthand for s[2] followed by s bytes of UTF-8 text. Details not described
here are the same as in Styx, in particular, file metadata is exactly that used by Styx.

The attach request introduces the user to the server. It corresponds to a mount opera­
tion. Authentication must take place prior to this transaction. Indeed, authentication is

size[4] Rerror tag[2] ename[s]

size[4] Tattach tag[2] uname[s] path[s]
size[4] Rattach tag[2]

size[4] Tput tag[2] path[s] fd[2] mode[2] stat[n] offset[8] count[4] data[count]
size[4] Rput tag[2] fd[2] count[4] qid[13] mtime[4]

size[4] Tget tag[2] path[s] fd[2] mode[2] nmsgs[2] offset[8] count[4]
size[4] Rget tag[2] fd[2] mode[2] stat[n] count[4] data[count]

size[4] Tremove tag[2] path[s]
size[4] Rremove tag[2]

size[4] Tflush tag[2] oldtag[2]
size[4] Rflush tag[2]

Figure 2: Messages in the current version of the Octopus Protocol, Op.

left out of the protocol as in Styx. Before speaking Op, a client and a server may use the
communication channel to mutually authenticate and also to encrypt the channel for fur­
ther communication. We are using Inferno authentication and encryption mechanisms
for that purpose.

Files can be created (and directories) and their contents (and metadata) updated by
means of put requests. They can be removed by means of remove requests. File con­
tents (and their metadata) may be obtained by means of get requests. The flush request
is meant to abort a previous, outstanding, request. It is used to abort ongoing RPCs.

A reply for a T-message is either an appropriate R-message or Rerror, indicating that
the request failed. In the latter case, the ename field contains a string describing the
error. Each request is considered to be atomic with respect to its execution in the
server. There is an implementation-specific limit on the amount of data that may be
sent in Op in a single request or reply, but note that the get transaction permits the
server to send multiple reply messages for a single request (this will be discussed in
more detail later on).

3.1. File names and descriptors

Most T-messages request that an operation be made for a file. Usually, the file is iden­
tified by the path field of the T-message. The path field contains a string with a file
name or path (rooted at the server�s root directory).

In addition to the path field, both Tput and Tget may identify the file using the fd field,
which contains a small integer representing a file descriptor to the file. Note that this fd
is very different from a fid. This descriptor is to be considered a cache identifier for the
path mentioned in the request. In other words, when a valid descriptor is sent in a Tget
(or a Tput) the server ignores the path and uses fd to identify the file to be used for the
operation. If the fd is invalid, the file server uses path instead. The special value NOFD
(~0) makes this field void and represents a null descriptor.

The role of file descriptors is to let the server know whether there are any clients using a
particular resource, without requiring open or close RPCs. This is critical for exporting
devices, in particular since a high-level request may require multiple put or get requests
at the level of the protocol, in which case the device has to know when the request has
completed (by identifying the last message in the request). The fd compensates partly
for the lack of fids in the protocol, though it has to be stated that an fd is a completely
different thing than a fid.

File descriptors are allocated by the server upon request. This means that the client has
to wait one RTT to issue more requests on the same fd which would be the case if the fd
was allocated by the client. The reasons for the server to allocated the fds is that the
Styx requests which do so can generate an error. This error needs to be conveyed to the
application. This cannot be done until the application gets the response for the first
request. Considering this, it is easier for the server to be able to crash and recover just
by allocating new fds, without having to keep track of the ones used by the client.

A client may also specify in a Tget or request that more requests of the same type will
follow, by setting the OMORE bit in the mode field of the request. The server then allo­
cates a valid (unique) descriptor and sends it back to the client in the R-message so that
it can be used in the subsequent requests for that file. When the client issues the last
request (or the server the last reply) the descriptor is deallocated and NOFD is sent as fd
in the reply. Note that even though the client must issue one last request to cause the
descriptor to be deallocated, this can be done once the application is done with the file
so that this round-trip-time is never experienced by it (or the user).

This allocation of descriptors by the server in response to put or get requests permits
doing an implicit open on a file in the first request of a series, and an implicit dealloca­
tion in the last one, without requiring extra RPCs for open or close operations. Further­
more, because the file path is still sent in requests using descriptors, a server that
crashed and restarted may easily recover a lost descriptor. It would allocate a new one
for the given path and reply with the new descriptor. The client would use the new one
in further requests for the file. That is to say that, as far as the protocol is concerned, it
is easy to make servers behave as if they were stateless (even though they do have
state). Losing the validity on the server of the file descriptor means that any ongoing
request on that descriptor is finished (be it performed or aborted) but this is, of course,
what happens when a server crashes and recovers. Thus, semantics are reasonable for
applications.

3.2. The put transaction

The Tput request asks the server to update the file identified by either fd or path in the
message, perhaps also creating the file. We reproduce here the format of the messages
for the convenience of the reader.

size[4] Tput tag[2] path[s] fd[2] mode[2] stat[n] offset[8] count[4] data[count]
size[4] Rput tag[2] fd[2] count[4] qid[13] mtime[4]

The mode field carries several bits that determine what has to be put: ODATA, OSTAT,
OCREATE, and OMORE. A Tput with the ODATA bit set updates file data in the server,
placing count bytes from the data field in the file at position offset. When this bit is not
set, count is zero and the message does not carry any data. But note that it is legal to
specify ODATA and use zero as count to issue a write of zero bytes (which is sometimes
used by some devices as a signaling mechanism).

A Tput with the OSTAT bit set updates file metadada, as indicated by the stat field
(using the same format used by Styx). Only metadata fields not set to null values are
honored, as in Styx. A Tput request without this bit set in the mode field does not send
the stat field through the communication channel.

A Tput request with the OCREATE bit set creates the file if it does not exist, and trun­
cates it to zero bytes otherwise. The write offset is still obeyed even when OCREATE is
specified, for messages that also specify ODATA. Also, note that using a single request

to mean both creation and truncation removes the usual race between open with trunca­
tion and creation. Addressing this race in Inferno using Styx required several RPCs just
to reduce the race window.

The reply message, Rput, returns the number of bytes written to the file. It is considered
an error for the user when the number of bytes written is less than the number indi­
cated in the count field of the Tput request. Nevertheless, an Rerror message may be
returned instead, in case of error, to report the error and its cause. To help clients cach­
ing file contents, an Rput reports both a file qid and mtime back to the client. The qid
contains a unique number for each file, and a version number that increases for each
update to the file. In this case, the reported qid corresponds to the file after the put
request has been processed.

With this transaction, a client may create, write, and adjust permissions (or other meta­
data) with a single RPC. As an example,

Tput tag /a/file NOFD OCREATE|ODATA|OSTAT (nemo,nemo,0664,...) 0 5 hello

Rput tag 5 NOFD qid mtime

creates /a/file in the server, sets the ownership in its directory entry to user nemo,
group nemo and use permissions 0664, and finally writes 5 data bytes on it. If the file
exists already, it is truncated (because of OCREATE), otherwise it is created by the RPC.

The put transaction permits the creation of directories and modification of the respec­
tive metadata as well. To create a directory, the stat field must have the DMDIR bit set in
the mode field (used to carry file permissions). In this case, ODATA is not allowed. Meta­
data can be set as for files.

3.3. The get transaction

The Tget message asks the server to retrieve data (file data or directory contents) or
metadata for the file (directory) identified by either fd or path. We reproduce the
involved messages here for the convenience of the reader.

size[4] Tget tag[2] path[s] fd[2] mode[2] nmsgs[2] offset[8] count[4]
size[4] Rget tag[2] fd[2] mode[2] stat[n] count[4] data[count]

The mode field in the request, like before, has bits OSTAT, ODATA, and OMORE that can
be set independently.

The OSTAT bit asks the server to respond with a message including the directory entry
for the file, in the stat field (it would have the OSTAT bit set as well). When OSTAT is not
set, the stat field is not sent through the communications link.

When ODATA is set, the server is being asked to reply with at most nmsgs messages,
each with at most count bytes of file data (and the ODATA bit set). A zero value for
nmsgs means that the server may generate "any number" of replies, as needed to
retrieve the entire file. Data retrieved starts at offset in the file. The reply (each one!) to
a Tget includes the number of bytes retrieved, reported in count, and the actual data.
All replies include the count field, although it might be zero for requests with just the
OSTAT set in their mode field. The end-of-file indication is explicitly signaled by a reply
that does not have the OMORE bit set. This permits devices to reply with zero byte mes­
sages while still having this bit set, to avoid signaling an end-of-file, which can be use­
ful when accessing special devices.

For example, a single RPC is needed to obtain both file metadata and all data, assuming
the file is up to MAXDATA bytes long:

Tget tag /a/file NOFD ODATA|OSTAT 1 0 MAXDATA

Rget tag NOFD ODATA|OSTAT (nemo,nemo,0664,...) 5 hello

A single get request may grant the server the right to send multiple replies, to let it
stream data to the client (the transport protocol is assumed to deal with congestion and
flow control). The series of replies for a single get request completes when one of the
following conditions hold, whichever one happens first: (1) there is no more data in the
file past the offset used; (2) an error happens; (3) the maximum number, nmsgs, of
replies have been sent. The descriptor is implicitly deallocated by the server in the first
two cases.

For requests targeted at directory files, nmsgs is always considered to be zero (no mat­
ter its actual value). As a consequence, when reading a directory its entire contents are
sent back to the client, irrespectively of the number of replies needed to do that (each
reply contains an integral number of directory entries), which simplifies the atomic read­
ing of directories by the server. The key assumption here is that directories are not very
large.

4. Implementation

The implementation consists of a program called ofs that speaks Styx as a server and
Op as a client; and a program called oxport that speaks Op as a server to export the
name space where it runs. A convenience library to speak Op providing functions to
marshal and unmarshal messages is used by both programs. Figure 3 depicts the basic
scheme of the system.

Oxport is a single program and it is very simple. It runs on the server and uses file sys­
tem calls to export the name space. It uses a different process to serve each RPC. Pro­
cesses are reused when done to avoid the expense of creating them, as with Xfids in
acme. A helper process keeps Op fds open and maps them to Inferno fds. Oxport is
easy to implement, comprising only 589 lines of code (plus 726 of the Op library). Of
those, 105 lines are used to implement Tput and 118 to implement Tget.

Conversely to Oxport, Ofs is quite complex. The reason for this is that it has to act both
as an Op client and as an Styx server. It also has to do some caching. As a conse­
quence, it is six times bigger, 3209 lines long plus the Op library. It also keeps a tree
data structure used as cache for remote files; mostly for metadata. Each entry in the tree
contains a prefix of the file contents, besides metadata, because a Tget in Op retrieves
data (along with metadata) that can be used to satisfy further requests.

Optionally, the tree can be instructed to use a directory on the terminal�s disk to cache
entire files (and not just prefixes). This is mostly useful to avoid bandwidth problems.

The tree cache works as follows. Upon attending a walk to a file, the tree invents inter­
mediate directories needed to reach the file we are walking to. The metadata for the tar­
get file is obtained by issuing an Op Tget request to the server. For directories, this
retrieves the entire directory data besides the metadata and the tree creates additional
entries as appropriate. For files, a small data prefix is retrieved along with metadata
that is kept cached for future read requests.

Files with a length of zero, as reported by the server, are not cached (only their directory
entries are). They are probably stream or device files whose lengths are not updated by
the corresponding drivers and Ofs tries not to interfere.

Cached data is only used if the entry is considered valid. An entry is kept valid only for a
small period of time, called the coherency window (a user settable parameter). Once the
coherency window expires, the server is consulted to check out if the entry is still valid.

This is done also by issuing another Tget request, which may also retrieve (an initial
prefix for) new file contents.

Regarding writes, cache behavior is different. Creates for directories are performed
write-through (synchronous). Removes are done write-through as well. Writes can be
either write-through or handled asynchronously. Writes not at offset zero and filling up
an entire protocol message are done asynchronously. Other writes are handled syn­
chronously (write-through) to report possible errors to the application. The limit on the
maximum number of processes that Ofs may create (a configuration parameter) places a
limit on the number of concurrent write requests that may be outstanding at the same
time.

Multiple Styx fids are mapped to the same cache entry in the tree. This means that they
may share a single Op fd. Fids open for both reading and writing would use two Op fds
each; because an Op fd is used either for issuing Tget requests, or for issuing Tput
requests. In any case, a Styx Tclunk request is guaranteed to release the associated Op
descriptors. This suffices to let the server recognize when a request consisting on mul­
tiple reads (or writes) is done.

The mapping between Styx fids and Op fds just described is needed to be able to reuse
data kept in the client without having to reach to the server. The drawback is that, as a
consequence, clone files will not work under Op.

A clone file is cloned when an open is completed on it. After the open, the only way to
distinguish between operations on the original file and on the new file is to use the Styx
fid. The absence of Styx fids or anything mapping one to one to them makes clone files
unfeasible. Furthermore, any other file multiplexing strategy based on the Styx fid will
not work either. This affects programs like the connection server, the registry, and oth­
ers using clone files.

The application does not have to wait in any case while closing or clunking fids because
Op descriptors are released asynchronously. In Inferno this is not really a problem
because of the use of the garbage collector to clunk unused fids.

All operations that may be attended from the cached data are handled by a central pro­
cess devoted to implement the tree. For all other cases, the tree implementation spawns
processes to issue concurrent op requests, reusing them in the style of Acme�s Xfids. All
communication through the Op link is multiplexed by another process that provides a
channel based interface for its clients.

client

system

Styx
Ofs

Ofs

cache

Op
Oxport

System

Calls

Octopus

Name Space

Figure 3: Basic scheme of the system

5. Discussion

For most file servers the implementation described works fine and we use it without
any problem. There are some problems for some devices. As stated earlier, because of
the absence of fids, clone files cannot be exported. Of course they can always be
exported using Styx, which makes this problem minor. Note that fids require extra RPCs

to maintain them (and thus extra latency); besides making more complex the implemen­
tation, as extra state has to be maintained for them. Arguably some of this complication
is already in the cache to maintain the state of the Op descriptors.

The cache tries to know the size of a file by using its metadata. This has also resulted
to be a tricky issue. As mentioned above, files of length zero are usually files that
indeed have data. Some of them are indeed an unlimited source of data. Because of this
we had to make the cache ignore data for such files, and also place a limit on the maxi­
mum amount of per-file cached data (just for safety).

The protocol is worth its overhead when RTT goes above 1 millisecond. The problems
mentioned above make it worth using the protocol for latencies of 50ms and above.
The number of RPCs for normal usage of a remote file tree is reduced an order of mag­
nitude. This makes the difference between being able to use a remote file system inter­
actively and not being able to do so.

While using it we learned something about implementing file systems for devices. File
sizes should be kept accurate (or the cache may go crazy). Keeping them null to signal
unlimited stream files is reasonable. As a related issue, the information conveyed in the
Qids should be accurate (also because of caching). For example, if reading a control file
reports something else than the last thing written into it, the version must differ from
that implied by the write; that makes any cache consider that the file has changed and
does not have what was last written on it.

Multiplexing a single file to provide multiple connections by using the fids is a source of
problems. For us it seems easier to let a program create a file and use it as its connec­
tion than using a clone file. This has the extra benefit of easing direct shell program­
ming using the file system. Using clone devices from the shell is weird and error prone.

Octopus is still work in progress and not completely functional yet. We have been using
Op for months to use Inferno as a terminal for a remote Plan 9 system. That has been
with RTTs in the range of 50 to 100 milliseconds. Most of the time we have been using
the terminal Inferno to execute commands, and the protocol has been used just to make
the file system more responsive. We have also tested the protocol with devices, but this
is not being used daily.

6. Related work

LBFS [5] focuses on bandwidth problems, rather than latency problems. It breaks the
files in chunks and uses hashes to identify the chunks already present in a local cache.
In order to do so, it incurs in the extra latency of sending the hashes and waiting for the
answers. Therefore, for latency dominated networks there is almost no improvement,
specially if most of the files fit in a single packet as is our case.

Cfs(4) is a user-level file server that caches information about remote files onto a local
disk. As LBFS, it helps with bandwidth problems, but does not help as much on latency
dominated problems. That is because it stats every file before taking it from of the
cache to check for its consistency on each open. The cost of a stat is almost the same of
the cost of a read over a high latency network. Also, all 9P messages except read, clone,
and walk are passed through cfs unchanged to the remote server.

Some efforts have gone into making CIFS work on WANs. These efforts go in three direc­
tions. Some of them, like Cisco WAFS [9] (formerly Actona) and Packeteer [10] (for­
merly Tacitnetworks), do compression and caching. The problem is that they are not

capable of exporting synthetic file systems, as we do. Most of the heuristics imple­
mented in Op try to overcome this problem making the cache aware of them.

Riverbed [12] uses a different approach. It changes the TCP/IP stack to decrease the
latency and also tries to identify TCP segments that have been already sent. The prob­
lem for us in this approach is that there are too many changes at too many levels: it
would force us to replace all the protocol stack for all the hosts.

The third approach used by Disksites [11] and Availl [13] is to use some form of asyn­
chronous replication of the file system. This strategy does not work in our target envi­
ronment. Our users cannot carry the whole file system around. Moreover, this does not
work with synthetic file systems.

NFS version 4 [8] tries to batch file systems operations whenever possible, but NFS ver­
sion 4 is not designed with synthetic file systems in mind, so it is unusable for us. The
same also happens to other file systems like CODA [7] or Echo [4].

Rangboom [3] uses 9p to share name spaces between different users across the inter­
net. It is used to share file systems interactively and runs against most of the problems
Op deals with. It does metadata caching at the level where the operating system inter­
faces the file system client (i/o manager), like Op, and sends the clunks asynchronously.
Even with this optimizations, some applications run into latency issues.

References

1. F. J. Ballesteros, E. Soriano, G. Guardiola and S. Lalis, Building a Network File Sys­
tem for Device Access over High Latency Links, Under Review, also available at
http://lsub.org/papers, 2007.

2. F. J. Ballesteros, P. Heras, E. Soriano and S. Lalis, The Octopus: Towards building
distributed smart spaces by centralizing everything., UCAMI, 2007.

3. G. Collyer, R. Cox, B. Ellis and F. Tavakkolian, Shared Name Spaces, Iwp9, 2006.

4. T. Mann, A. D. Birrell, A. Hisgen, C. Jerian and G. Swart, A coherent distributed file
cache with directory write-behind, ACM Transactions on Computer Systems 2, 12
(May 1994), 123-164.

5. A. Muthitacharoen, B. Chen and D. Mazieres, A low bandwidth network file system,
ACM Symp. on Operating System Prin., 2001, 174-187.

6. R. Pike and D. M. Ritchie, The Styx Architecture for Distributed Systems, Bell Labs
Technical Journal 5, 2 (April-June 1999), .

7. M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel and D. C.
Steere, Coda: A Highly Available File System for a Distributed Workstation Environ­
ment, IEEE Transactions on Computers 39, 4 447-459.

8. S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler and D.
Noveck, Network File System (NFS) version 4 Protocol, Internet RFC3430, 2003.

9. Cisco Systems Inc. - Wide Area File Services Software ,
http://www.cisco.com/en/US/products/ps6469/, 2007.

10. Packeteer Inc. - Response Time Technology, Packeteer White Paper Series,
http://www.packeteer.com, 2002.

11. Expand Network Inc., http://www.expand.com/Product, 2007.

12. Riverbed Technology Inc., http://www.riverbed.com/technology, 2007.

13. Availl Inc., http://www.availl.com/products, 2007.

