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A Git for 9

Ori Bernstein
ori@eigenstate.org

ABSTRACT

Plan 9 is a non-posix system. Upstream git has been ported, but feels distinctly
mismatched in a plan 9 environment. Even in its native environment, the user experience
leaves much to be desired. Here, we describe our own take on the Git version control
system: An implementation of git that is sufficiently compatible with the rest of the Unix
world to interoperate, but with a typical Plan 9 view. This software provides both a client
and server, and has been used to host 9front development on 9front for the last 2.5 years.

1. What is Git?

Git is a version control system. It is used for tracking changes to a set of files. It manages commits,
file hierarchies, and file contents, and the forking and merging that happens when people work in parallel
on a single project.

2. A History of Plan 9 Source Control

Plan 9 was one of the early systems that provided pervasive versioning. At Bell Labs, the file sys-
tems used were among the first where daily dumps, or snapshots, of file system contents were taken. In
addition to While no explicit commits were made, daily snapshots of the entire state of the source tree were
available for diffing against, distributing between users, bisecting bugs, auditing, and even replicating.
While primitive to modern eyes, this situation got the team at Bell Labs much of the benefits of modern
version control, at almost none of the cost.

In the meanwhile, the rest of the world developed tools like RCS, SCCS, CVS, SVN, Bzr, Monotone,
Mercurial, and Git. These tools are relatively large, complex, and to a large degree were ignored by the
team at Bell Labs.

When 9front forked Plan 9, people stopped being in the same room, same network, or same time-
zone. Tools for managing disparate source trees became more useful, and more important. Accordingly,
9front imported a copy of mercurial, along with Python. This served us well for the better part of a decade.
However, the world moved on, and our version of both python and mercurial gradually drifted more and
more out of date. Updating them became a good deal of work.

Outside of the Plan 9 universe, the world had also moved on. Git won the VCS wars, so any code
outside of the Plan 9 universe, and even a significant portion of the code within it, was hosted on git.

When Git for Plan 9 was initially started the goal was not to replace mercurial, but to allow access to
code hosted on popular hosting providers such as github. The author of this paper was maintaining code
that primarily ran on Unix, but which he wished to develop and support on Plan 9. The lack of a git imple-
mentation made this painful, and solving this was therefore the initial goal.

3. What’s In a Repo?

There are many tutorials and reams of documentation on the nitty gritty details of how git stores files
in repositories. This document will not go over the storage in full. Instead, it will give a rough overview,
in sufficient detail to put color on how the rest of git is implemented.



Git is a distributed, offline capable version control system. Therefore, every git clone contains a full
copy of the repository in the .git directory. The repository is composed of several components: An object
store, the index, and the branch references, or refs for short. In our implementation of git, the index format
is changed. Additionally, the .git repository also contains an empty directory named fs. This directory is
used as a mount point for git/fs.

To make this more concrete, a git repository may look something like this:

+-- objects

|  +-- 3£5d...c9283

| +-- ae7d...3073f

| +-- pack/

| +--1£d30...3cfb3.pack
| +--1£fd30...3cfb3.1idx
+-- refs/

| +-- heads

| | +-- front

| +-- remotes

| +-- remotes

| +-- front

+-- HEAD

+-- INDEX9

The objects/ directory is where the contents of the repository are stored. Each file, directory, commit,
and tag gets its own object within the objects directory. The file name within the objects directory is the
hash of the compressed data.

The objects/pack/ directory contain pack files, which increase the efficiency of the object store. Pack
files aggregate a collection of objects up into a single file, compressing them and deduplicating them
against each other. They are paired with an index file, which allows rapidly seeking to objects within the
pack.

The refs/ directory contains a set of files containing commit pointers. These commit pointers are files
containing a single commit hash on a single line.

The HEAD file is the final layer of indirection for commits. It contains the name of the current
checked out branch in the refs/ directory.

Finally, the repository contains the INDEX9 file. This file is the only place that the Plan 9 git reposi-
tory format diverges from the Torvalds git repository format. This file contains a list of tracked, newly

added, and newly removed files. The index is used by git/commit to decide what files to add and remove
from the subsequent commit. Unlike Torvalds git, the checked out files are used to update the commit.

Git9 is built around six core binaries. All other commands are present to wrap these, and provide a
convenient user interface. These are the core binaries:

git/get: Negotiates a and downloads minimal set of data to sync a local respository from a remote
one.

git/send: Negotiates and transfers a minimal set of data to a sync a local repository to a local one.
git/serve: Negotiates and transfers a minimal set of data to serve a git client.

git/save: Updates the contents of a repository, creating a new commit object and updated file tree.
git/query: Implements a small query language to inspect the commit graph.
git/fs: Serves repository history as a file system

There first three are designed as one would design them on Unix, and indeed have equivalent com-
mands in Torvalds git. Most of the remaining commands are written as rc scripts. They lean heavily on
git/fs to make them possible. Some of the remaining ones, like git/walk, are in C, because the performance
overhead of exec.



Git/get is the core of commands such as git/clone and git/pull. For a provided set of branches, it
downloads the data that is not currently in the repository. It prints the branch names and hashes, allowing a
wrapper such as git/pull to update the branches.

Git/send is the inverse of git/fetch. It finds the commits in the local repository which are not present
on the remote repository, and sends the minimal amount of information to update that remote repository.

git/save creates a new commit from a given list of files

a message, and a parent commit. The commit info is prepared by git/‘commit, git/import, or other similar
scripts..

Git/query allows asking questions about the commit graph. These queries are provided via a sepa-
rate binary rather than a file system, The query language is vaguely inspired by mercurial revsets, but
stripped down and converted to a mostly postfix form for ease of parsing.

Where git9 differs most strongly from Torvalds git is the addition of git/fs.

Git/fs serves a file system interface to a git repository in the current directory. This file system pro-

vides a read-only view of the repository contents. By default, it is mounted on /mnt/git. It does not cache
mutable data, so any changes to the git repository will immediately be reflected in git/fs.

The existence of a file system interface is extremely powerful, allowing scripts that operate on historical
data to be written with ease. For example, git diff is not strictly necessary. The same effect could be
achieved with plain old diff(1), though with clunky file paths. The git/diff shipped with git9 exists simply
for the purpose of shortening the paths typed.

The file system looks something like:

/mnt/git

+-- ctl

+-- HEAD

| +-- tree
|  +--files
|  +--in
| +--head
|
+-- hash
+-- msg

+-- parent

|

|

|

|

|

|

|

|

+-- branch
| |

| +-- heads

| | +-- master

| | +-- [commit files, see HEAD]

| +-- remotes

| +-- origin

| +-- master

| +-- [commit files, see HEAD]
+-- object

| # blob contents

+-- 00051£fd3f066e8c05ae7d3cf61lee363073b9535¢F
+-- 00051fd3f066e8c05ae7d3cf61lee363073b9535¢c
+-- [tree contents, see HEAD/tree]

+-- 3f5dbc97aeb6caba®9928843ec65fb3089b96c9283
+-- [commit files, see HEAD]



4. Git from a File System Point of View

In Plan 9, everything is done as a file system. This is because it eables a tool based approach.
Scripts and reusable utilities that can access the exposed names replace data-structure and file-format spe-
cific code. A good example of the benefits of this approach can be seen in git/merge. The core of git/merge
is included below:

fn merge{
ourbr=$gitfs/object/$1l/tree
basebr=¢$gitfs/object/$2/tree
theirbr=$gitfs/object/$3/tree

all='¢nl{{git/query -c $1 $2; git/query -c $2 $3} | sed ’'s/A..//’ | sort | unig}
for(f in $all) {

ours=$ourbr/$f

base=$basebr/3$f

theirs=¢$theirbr/$f

merge3 ./$f $ours $base $theirs

gitup

flagfmt=’’; args='theirs’
eval ‘'’ {aux/getflags $*} || exec aux/usage

if (! ~ $#* 1)
exec aux/usage

theirs=’'{git/query $1}
ours=' {git/query HEAD}
base=’ {git/query $theirs A * ' A $ours N '@’}

if (~ $base $theirs)
die ’'nothing to merge, doofus’
if (! git/walk -q)
die ’'dirty work tree, refusing to merge’
if (~ $base $ours) {
>[1=2] echo ’'fast forwarding...’
echo $theirs > .git/refs/’{git/branch}
git/revert
exit '’
}
echo $ours >> .git/merge-parents
echo $theirs >> .git/merge-parents

Note that the git/merge command is largely a wrapper around the merge3 command.

There’s more code involved in deciding what to merge than there is in the merging itself. Walking
through it in sections, we begin with initializing the binary.

The script begins with some relatively uninteresting code. It loads a few utility functions, and parses
flags. One of these utility functions is gitup. Gitup finds the base of the repository, and changes into it, so
that commands which expect a .git directory to be present work.

Next, we need to figure out what the commits we’re merging are. For a 3-way merge, we need the
last common commit, and the two heads we’re bringing together. A few git/querys make short work of that.



theirs=’{git/query $1}
ours=' {git/query HEAD}
base=' {git/query $theirs A ’ ' A $ours N '@’}

The only interesting thing to note is the @ operator in the git/query command line. It finds the least
common ancestor of two commits. For example, if you had this commit graph:

0---0---T <-- theirs

————— L o---o0

/

0---0---0 <--ours

Then the @ operator would walk back to the point at which the two branches diverged, marked with

The next chunk of code ensures that we’re in good shape to merge. If the least common ancestor of
our curernt commit is the same as their commit, that means that the branches never diverged. Moreover, it
means that we already have their commit.

--0--0--T--0--0--0 <--ours
A

theirs

If we are in this situation, there’s no need to merge.

It also checks that we don’t have unmerged work in the tree, so we don’t make a mess of things that
are in progress.

if (~ $base $theirs)
die ’'nothing to merge, doofus’
if (! git/walk -q)
die ’'dirty work tree, refusing to merge’

If, on the other hand, the base commit is the same as our commit, we can simply fast forward. The
commit graph for that looks like:

--0--0--0--0--0--T <--theirs
A

ours

And we can simply move the ourspointer forward to point at their branch.

After the setup and checks are complete, we’re ready to merge. For this, we simply invoke ape/diff3
on the files, pairwise, to do the merge. We first figure out which files we want to merge:

fn merge{
ourbr=$1/tree
basebr=$2/tree
theirbr=$3/tree
all=‘'{walk -f $ourbr $basebr $theirbr | subst -g ‘A (’$ourbr’|’$basebr’ |’

In this snippet of code, we walk down the file trees to get the list of all files in all three branches.
This is the list of files we want to invoke merge on. Since some of the files may exist in one branch but not
another, it’s necessary to substitute the ones that don’t exist with happens/dev/null. That snippet:



for(f in $all) {

ours=$ourbr/$f

base=$basebr/3$f

theirs=¢$theirbr/$f

if (! test -f $ourbr/$f)
ours=/dev/null

if (! test -f $basebr/$f)
base=/dev/null

if (! test -f $theirbr/$f)
theirs=/dev/null

Finally, the important bit happens: the merge:

if (! ape/diff3 -m $ours $base $theirs > $f)
echo merge needed: $f

We ensure the files are tracked or removed, as needed, and then we’re done.

if (test -f $f)
git/add $f
if not
git/rm $f
}

Most of the other tools in git9 are written as shell scripts, following similar principles. Examples
include <code>git/clone</code>, git/log, git/commit, and git/revert.

5. Production Experience

This implementation of git has been used to manage the 9front sources since June 2021. The transi-
tion uncovered some bugs around permission handling in a multi-user system. Other than that, the migra-
tion to git was largely uneventful.

When serving git for plan 9, we integrate deeply into the Plan 9 environment. The git/serve binary is
designed to run under listen(1). When running unauthenticated, the git binary is launched with a script such
as:

#!/bin/rc
exec git/serve -r/usr/git

A new protocol name, hjgit:// has been added to the Plan 9 git for authenticated communication. Authenti-
cation is done using factotum, using tlsclient and tlssrv to establish a tunnel. This is served using the fol-
lowing script:

#!/bin/rc
exec tlssrv -a /bin/git/serve -wr/usr/git

This setup is used on both Shithub and the 9front git host. It has been in use since June 2021, and is
currently serving between 3 and 4 gigabytes of traffic across the web interface as well as the git service.
Service has been more or less problem free, though it exposed one issue in the mount interface. The mount
id would wrap to negative, causing Plan 9 to detect a successful mount as an error.

6. Comparison to Torvalds Git

Because of the tool based approach, the Plan 9 implementation of git is far simpler, shorter, and more
amenable to changes. However, it misses several features, such as git/blame due to the difficulty of access-
ing internal state for tools such as diff.



The Plan 9 implementation of Git sits, therefore, at 9662 lines of code at the time of this writing,
excluding tests. The Torvalds implementation of Git sits at 315,306 lines of code, excluding tests, guis, and
git web viewers.

7. References

[1] Git authors ‘‘Git documentation,’’
https://github.com/git/git/tree/f86de088f8c32377fbd681cc481e7128af83ce2f/Documentation,
Updated Wed, May 31 2023

[2] John Wiegley, ‘‘Git from the Bottom Up’’ https://jwiegley.github.io/git-from-the-bottom-up/
Updated April 1 2023

[3] Konstantin Serebryany, Timur Iskhodzhanov ‘‘ThreadSanitizer - data race detection in practice’’
Workshop on Binary Instrumentation and Applications, 2009



Ofs: An Experimental Generalized Storage Server

Brian L. Stuart

ABSTRACT

As part of an ongoing research program studying techniques and
architectures for data storage, we have investigated the possibility of uni-
fying file, object, and block access to data stores. To date, the result of
this investigation is a generalized storage server that provides all three
methods of access. Using full path name hashing and extensible meta-
data, this server provides a highly flexible platform that can form the
basis of a production server or of further storage research. Here, we dis-
cuss the background behind the server, the basic concepts of its design,
and the directions for continued R&D planned for it.

1. Introduction

In the very earliest days of computing, data storage was primarily in the form of
punched cards and magnetic tapes. A particular set of data was identified as much by
what tape contained it, or what box contained the cards as any other identification. It
was the advent of the disk drive that shaped our modern view of data storage. In partic-
ular, the disk had two characteristics that weren’t found on tapes or cards: fixed rela-
tively large blocks and random access. These two characteristics led to our modern pic-
ture of a particular set of data occupying one or more blocks of storage space and being
labeled with a file name.

Very quickly, a model of data access developed where an application speaks to a file sys-
tem component in terms of file names and offsets within the file. The file system code
then talks to a block device driver to read and write individual blocks. In [1], we note
that the job of the file system, then, is two-fold. First, it must manage the set of names
for the files, and second, it must mange the allocation of blocks to files. These relation-
ships are illustrated in Figure 1.

Beginning with research at Xerox PARC and widely deployed by workstation manufactur-
ers like Sun and Apollo, the application often ran on a different machine than the file
system. So by means of some network file access protocol, the application makes a
request of the file system (server) which accesses disks in terms of blocks just as before.
Over the years, numerous such protocols were developed with the most relevant to
Plan 9 being NFS, CIFS (née SMB), and 9P. This approach has gained the name Network
Attached Storage (NAS) in the trade.

Later work explored the possibilities of putting the network connection between the file
system and the block devices, rather than between the application and the file system.
Several protocols also grew up around this type of storage organization. Among them
are FiberChannel, iSCSI, and AoE. A common trade term for a network system struc-
tured in this way is Storage Area Network (SAN). Figure 2 illustrates both file-oriented
and block-oriented network accessible storage.

Recently, a third alternative for where to put the network connection has emerged [2]. If

we put the connection in the middle of the traditional file system structure between the
name management and the block management, we get what is often called an object
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Figure 1: Storage Management Component Relationships

storage system. This structure is illustrated in Figure 3. For completeness, we should
note that the concept of an object store does not necessarily have to be implemented
over a network. However, it is the use of networked storage appliances as object stor-
age devices that interests us here.

As with any set of successful technological alternatives, each of these storage architec-
tures has strengths and weaknesses relative to the others. This means that some appli-
cations are better suited to communicating in terms of files, some in terms of blocks,
and some in terms of objects. Therefore, we do not attempt to argue for one approach
as universal in this paper. Instead, we examine the design of a storage server that pro-
vides all three means of access in such a way that they all coexist and share the same
raw storage space.

2. Access Characteristics

To get a better sense of how a unified storage system should be structured, we need to
look at how each type of storage access is specified.

2.1. Blocks

We begin by looking at how block I/O operations are specified. Normally, there are one
or more collections of blocks identified by logical unit numbers (LUNs). (While semanti-
cally problematic, we often also refer to the actual storage space as a LUN.) The number
of LUNs is relatively small, and the size of each is relatively large. Conceptually, each
LUN is like a single disk drive. Once established, it generally does not change size, and
therefore cannot grow as a result of writes. In practice, the set of blocks that make up a
LUN may be spread across several drives, or sometimes a subset of a drive. From the
perspective of a client using a block store, though, the whole of a LUN has characteris-
tics much like those of a disk drive.

I/O operations on blocks are carried out in units of blocks, typically the size of historical
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Figure 2: Network Storage Architectures: Network Attached Storage (left) and
Storage Area Network (right)

disk sectors, 512 bytes. Often reads and writes will involve several blocks, but incom-
plete blocks are never transferred. Thus to specify a read or a write in a block store, we
need a LUN, a starting block number, and a count of the number of blocks to read or
write. Taking AoE as an example, LUNs are identified by a 24-bit target number, block
numbers by a 48-bit LBA, and block counts by an 8-bit sector count.

One last issue of block storage is the allocation policy. Are blocks allocated administra-
tively before placing the block store in use, or are they allocated on demand as they are
written? Following the historical connection between LUNs and physical storage devices,
block storage systems originally operated according to the administrative allocation pol-
icy. As the option of demand allocation became available, it was usually described with
the trade term thin provisioning. By contrast, the traditional administrative allocation
came to be called thick provisioning. In most cases, dynamic allocation is implemented
much like sparse files in a traditional UNIX file system where only the written blocks are
allocated and not intervening unwritten blocks.
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2.2. Objects

Similar to the LUNs in block storage, objects are generally identified by a numerical des-
ignation. In the case of the SCSI object storage device specifications, this designation is
a pair of 64-bit numbers described as the partition ID (PID) and the object ID (OID). As
suggested by the large number of identification bits, there are generally many more
objects in an object store than LUNs in a block store. Unlike block stores, 1/0 in object
stores is specified in terms of the byte offset and byte count, rather than block number
and block count. Finally, the allocation policy of objects is usually dynamic, possibly
with administratively established upper limits.

2.3. Files

Files are, of course, the most familiar of the three storage paradigms we are consider-
ing. They share much in common with objects. Accesses are specified in terms of byte
offsets and byte counts. Allocation is typically on-demand allowing files to grow. The
primary difference between files and either objects or blocks is the means of identifying
a file. Rather than a fixed numeric identification, files are identified with strings that
have few (if any) constraints. The names are also usually organized hierarchically.



Although object IDs can be thought of as degenerate case of file names, the SCSI identi-
fication scheme only provides for two levels of hierarchy (partition and object).

3. The Naming/Allocation Management Boundary

At this point, we must admit to some degree of hand-waving and over simplification. In
particular, the boundary between the naming functions and the space management
functions of the file system implementation is a fuzzy one. We’ve described the hierar-
chical relationship among files as being a property of the naming. In practice, that hier-
archy is also usually represented in the on-disk data structures. As discussed later
here, however, that coupling between what are otherwise two independent functionali-
ties is unnecessary, and removing it opens up a number of interesting possibilities.

4. Design Motivation

We can see from the similarities between files and objects that they practically beg for a
unified implementation. In fact, in one of the early presentations on object storage, the
question was asked whether objects should be implemented on top of files, or files on
top of objects.

The first approach borders on trivially easy. All one need do is create files whose names
are the object numbers expressed in a human-readable notation. For example, if we
create one directory for each of the partitions in the SCSI object storage device specifica-
tion, and one file in each of those directories for each object in that partition, we can
name both with a hexadecimal representation of the 64-bit numbers. As long as the file
system allows names of at least 16 characters, then this kind of organization can be
used without any modification of the file system design. The reason this approach is
not often used is that most file systems are designed around the idea that a typical
directory contains tens to hundreds of files. However, we can easily have millions of
objects in a partition.

More commonly developed have been approaches where file systems are implemented
on top of object stores. In these implementations, each file and directory is contained in
an object. Because SCSI OSD defines a rich set of object metadata, the traditional UNIX
i-node metadata need not be managed directly by the file system implementation.
Exofs is an example of such a file system in Linux.

Regardless of what approach we take to connecting files and objects, it is clear that the
key mechanism is a mapping between names and numeric IDs. With that perspective, it
is clear that the infrastructure for a unified file and object system has been around for a
long time. For example, the UNIX file systems of the 1970s mapped names to i-
numbers that uniquely identified files. A little more recently, the 9P protocol identifies
files by an identifier called a QID of which a 64-bit path number uniquely identifies a
file.

One might suggest that the best approach to this unification is to replace the 64-bit
path in the QID with the pair of 64-bit IDs in the SCSI OSD specification. However, our
results show that translating both name and object IDs to an independent numeric iden-
tifier (such as a QID path) is more conducive to coexistence of files and objects and also
provides a mechanism for integrating block access. To understand why, we first
observe that the unique IDs for LUNs are usually administratively assigned, unique IDs
for files are usually assigned by the file system, and unique IDs for objects are usually
assigned by the client. So the benefits arise because mapping all client and administra-
tively assigned identifications to an internally managed space of IDs prevents collisions
between ID assignments.

For the remainder of this discussion of the design and implementation of our prototype
generalized data store, Figure 4 illustrates its major components and overall structure.
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5. Name and ID Management Design

For the prototype we report here, we have opted to use the 9P QID path for the inter-
nally generated unique IDs. The high-order four bits of the QID path are a type speci-
fier. This is used to allow multiple allocation strategies to coexist. The next 12 bits are
reserved. Their planned use is as a node ID for future research in distributed storage.
Finally, the remaining 48 bits of the QID path are assigned according to strategies suit-
able for different access mechanisms.

For mapping to these IDs, we use a hash table. Unlike other file systems using hash
tables, we hash the full path name of each file to find the bucket where we find the file’s
ID. Similarly, for objects, we have a textual representation of the partition and object
IDs. Collisions between file names and textual object IDs are prevented by constructing
all path names beginning with a slash (/). The QID paths of both files and objects use a
type field of 0. Block accesses, on the other hand, use a type field of 2. For the LUNs
accessed using a block paradigm, the 48-bit field contains the AoE target number in the
lower 24 bits.

With this arrangement, we can manage a storage space shared by files, objects, and
block LUNs. Although not implemented in this prototype, this arrangement also allows
the file server interface to provide access to both the objects and the block LUNs
through special name spaces. For simplicity, we use the same allocation mechanism for
all three storage types, resulting in naturally thinly provisioned LUNs.

6. Metadata Design

Most 9P servers are implemented in such a way that the names map directly to metadata
structures that contain the QID. However, because we want to support access directly
via the QID path to storage that is potentially unnamed, we map names only to QID



paths, and separately map QID paths to metadata. Unlike the i-numbers in a traditional
UNIX file system, the QID path numbers come from a space too large to use as simple
indices. Therefore, we use a second hash table that maps QID paths to metadata lists.

Each of the different types of storage entities requires a different set of metadata. For
example, an AoE LUN needs to include the major and minor AoE target numbers, but
doesn’t need any information representing any kind of hierarchical arrangement among
the LUNs. An object needs to include the PID and OID. Regular objects also need a
mapping to blocks that comprise the object, but partition objects need a way of identify-
ing those objects that are contained in them. Similarly, files served by 9P require owner
and group identifications, a mode, access and modification times, and pointers that
describe the hierarchical structure. Regular files need block mappings, but directories
don’t. Furthermore a full implementation of the SCSI OSD specification includes a sub-
stantial amount of additional metadata.

Even among different remote file access protocols the set of metadata varies. For exam-
ple, for files accessed through 9P, we need textual owner and group names, and QIDs
that contain a path, a version, and a type, none of which are found in NFSv3. Con-
versely, for NFS, we need to support numeric user and group IDs, symbolic links, device
nodes, named pipes, etc, all unknown in 9P.

For these reasons, we have opted for an extensible metadata design. The basic idea is
similar to that found in the VMS file system [1,3] and later in NTFS [1,4]. Each metada-
tum consists of a next pointer, a type, a name, and a value as illustrated in Figure 5. In
the present prototype, the value field is a fixed eight-byte value. In each metadatum,
this value is used in one of three ways. For integer valued metadata, the integers are
stored as 64-bit numbers. For short strings (=7 bytes), the string is stored directly in
the eight-byte value. If the datum value is a longer string or an arbitrary byte sequence,
the eight-byte value is an offset to where in the storage space the real value is stored.
All of the metadata entries for a given storage entity are arranged in a linked list. Free
metadata entries are also organized in a linked list.
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Figure 5: 6fs Metadata Structure

Block mapping is similar to that found in the i-nodes of traditional UNIX file systems
with a few simplifying differences. Each metadata block that identifies real storage
space contains one datum that specifies the root block of a tree of block pointers that is
either zero, one, two, or three levels deep. For the zero depth case, a single metadatum
specifies one data block for small files. Entities created with a known size, such as
LUNs, are created pointing to a tree of the appropriate depth. Entities created with an
initial size of zero are created with a tree of depth zero, but with no data block allo-
cated. If such a file or object grows too large to be represented by a single block of
block pointers, a new block is allocated to be the root of a tree of depth two, and it’s
first element points to the existing block of block pointers. The metadatum that had
pointed to the index block is replaced by one pointing to the newly allocated root. Simi-
larly, if an entity grows too large for a two-level tree, a third level root is allocated and
the metadata updated to point to it.



7. Design Implications

Managing names in terms of full paths has turned out to naturally break the coupling
between name management and space management. There is no longer any need for a
dedicated directory data structure on the storage media. In particular, we no longer
have a unique root directory structure that is typically located by a pointer in a
superblock. At first glance, this would simply be a mildly interesting point, hardly worth
mentioning. However, it turns out there are a number of useful properties that fall out
essentially for free from this simple design element.

First, the coupling created by on-disk directory structures made the integration of
objects conceptually awkward. In fact, most presentations of object storage redefine the
function of the subsystems on either side of the point at which an object protocol is
injected. However, by making the hierarchical relationships a function of name manage-
ment alone, the integration of files and objects can be quite straightforward as illus-
trated in the preceding sections.

The second interesting capability that falls out of this simplification arises from the lack
of a unique root identified in a superblock. It becomes almost trivial to support multiple
independent file systems, each with its own root directory. One simple way to make use
of this capability is to let each file tree be named by a “root’’ which begins with the
slash (/) character, and as we construct path names, we precede each path component
by a slash as a separator. Thus, the sys directory of an unnamed file tree would be
internally known by the string ““//sys’” and by *‘/fs1/sys’’ for a file tree named fs1. The
attach message of the 9P protocol makes provision for clients to specify a named file
tree when establishing an initial connection to the server. Similarly, the mount RPC pro-
tocol associated with NFS has provision for a string identified as a directory path. Nor-
mally, it is used to mount a subtree of a single file system served by a file server. How-
ever, if we generalize the string to simply specify the root of some file tree, then we can
use it in the same way as the file tree specifier of the 9P protocol and select among
independent file systems.

Finally, in reading this discussion, one can reasonably conclude that this is just a com-
plicated way of saying there’s a higher-level root that contains all the object, all the
LUNs, and all the independent file systems. Indeed, this is an excellent way to view the
overall structure. Viewing the structure from the perspective of an implicit root opens
the possibility of crossing access method boundaries. For example, if we define a file
system called ““/object’” then we can make all object accessible via 9P or NFS.

8. Experimental Object Extension to AoE

To provide a basis for development and testing of network object storage support, we
have chosen to eschew implementing iSCSI in favor of adding experimental object stor-
age features to AoE. These features are modeled on (but considerably simplified from)
the SCSI OSD specification. Several elements of the SCSI OSD model have been omitted
in their entirety for this research. First, there is no quota mechanism implemented.
However, implementing one has not in any way been precluded by the prototype design.
Second, no provision has been made for either the optional security manager or the
optional capability-based policy manager. Third, setting or querying attributes (meta-
data) are not allowed to be piggy-backed on other operations as is allowed in the SCSI
OSD specification. Fourth, the optional collection object type has not been imple-
mented.

With those caveats established, we now describe the protocol extension implemented in
the present prototype. The AoE command value 5 is used to issue an OSD command.
For OSD commands, the AoE Arg field includes:

1. A one-byte command field.
2. A one-byte flags field.



A two-byte length field.

An eight-byte partition ID field.

An eight-byte object ID field (omitted for some OSD commands).

An eight-byte address field (omitted for some OSD commands).

7. Avariable length data field for those commands or responses that require it.

Both requests and responses follow this format, as illustrated in Figure 6, except that
for responses, the PID, OID, and address are omitted.

oV s W

OCmd Flags Length

- Partition ID

- Object ID

- Address

Data

Figure 6: AoE Object Store Extension

The OSD commands supported are a subset of the SCSI OSD commands, and the value
of the command field is the low-order byte of the service action value in the SCSI OSD
protocol for specifying the same operation.

0x01: Format OSD. This command creates the root partition object as defined for SCSI
OSD. All fields after the length are omitted for this command. (However, because
of the minimum Ethernet frame size, some fields for this and other commands are
sent anyway.)

0x02: Create. The create command is used to create a new object within a partition. A
metadata list is allocated for the object and populated with a default set of meta-
data, but no data blocks are allocated on create. The PID and OID are specified,
but the address and data fields are omitted.

0x03: List. Only the PID is specified as part of the list command. If the PID is zero (i.e.
the root partition), the target sends back a list of the IDs of all extant partitions.
Non-zero values of PID will elicit a list of the objects in the referenced partition.
The length field of the response gives the number of bytes in the list of IDs
returned.

0x05: Read. For reading from an object, the PID/OID specify the object to be read, the
address field gives the offset from the beginning of the object where the read
should start and the length field gives the number of bytes requested. In the



response, the length field gives the number of bytes successfully read and the
number in the data field.

0x06: Write. Similarly the write command requests that the number of bytes specified
in the length from the data field be written starting at the offset in the address
field to the object in the PID/OID fields. On response, the length field gives the
number of bytes successfully written.

0x07: Append. The append command works like the write command, except that the
address field is omitted and the offset is implicitly the current size of the object.

0x08: Flush. Upon receipt of a flush command, the target writes all dirty in-memory
buffers to the disk.

Ox0a: Remove. The object specified the the OID/PID fields is removed by this com-
mand. Its data blocks and metadata are freed.

0x0b: Create Partition. This command is similar to the object creation command
except that a partition object is created. Thus only the PID is specified in the
request.

0xOc: Remove Partition. This command removes an empty partition freeing its
metadata list. If there are objects in the partition, it is an error.

Ox0Oe: Get Attributes. Metadata for the object specified by the PID/OID (partitions being
specified by on OID of zero) are queried by this command. The data field contains
a list of the null-terminated names of the items being requested. Data in the
response message is a list of the query results where each item is composed of its
null-terminated name, a single character type specifier and a value. The types are
h: short, I: long, v: vlong, s: string, and b: blob. The integral types are two, four,
and eight bytes, respectively. However, in the current prototype, all integer types
are handled as 64-bit vlongs. Strings are null-terminated and blobs are prefixed
by a two-byte length field. All numeric values are given in network byte order.

0x0f: Set Attributes. Setting metadata values is handled as the converse of getting
attributes. The data field contains the requested values to set in the same format
as returned by the get attributes request.

Two flags are currently defined for the flag field. The high-order bit (0x80) is set to
indicate a response message, and the next bit (0x40) is set to indicate an error. As sug-
gested above, with the exception of the read request and the write and append
responses, the length field always gives the number of bytes in the data field.

9. Implementation Details

Up to this point, we have described this work in pretty general and abstract terms. In
this section, we begin filling in details as they apply to the present prototype. The pro-
totype file/object/block store is called 6fs. (Earlier iterations of this design were named
according to earlier letters of the Greek alphabet. Ultimately, the intention is to name
the final version wfs, or perhaps Qfs.) It is implemented in C on Plan 9 using the 9P and
thread libraries. File services are provided by a 9P server and an NFS server. Block and
object services are provided by an AoE target.

9.1. Sizes

Blocks in Ofs are 2'> bytes (32KB), and block addresses are specified as 64-bit values.
Thus a block containing block addresses will contain 2'? (4K) such addresses. A single
superblock occupies the first block on the storage space. The next group of blocks are
used for the two hash tables. Following the hash tables there is a variable sized free bit
map. Variable sized regions for a metadata structure pool and a string/byte sequence
pool follow the free bit map. The remainder of the storage space contains allocatable
blocks for data and block indices.



As mentioned above, the blocks comprising a file, object, or LUN are mapped by a one,
two, or three level tree of block pointers. For a single level of block pointers, the maxi-
mum size is 2'2x2'>=227 bytes (128MB). For two levels of block pointers, the maxi-
mum is (2'%2)2x2'°=23% bytes (512GB). For three levels, the entity can be as large as
(2'2)3x2'5=2°" bytes (2PB). If a fourth level is added, the maximum size will be
enough to support up to 63-bit offsets for object and file access as well as the full ATA
48-bit block numbering in AoE.

9.2. Hash Tables

Each hash table contains a prime number of buckets in the range of 1048573 to
268435399. The prime number chosen is one greater than or equal to the number of
blocks in the store and close to a power of two.

Both hash tables are open implementations. For the path name to QID path table, non-
zero bucket entries point to blocks containing all elements that hash to that same
bucket. If a single block is not large enough to contain all of them, then the blocks form
a linked list with the last eight bytes of the block containing the block number of the
next in the list. Each element in the table is composed of an eight byte QID path, fol-
lowed by a two byte character count, followed by a variable length path name. For the
QID path to metadata block number mapping, bucket entries give the index of the first
metadatum for the first entity hashing to that bucket. As mentioned earlier, the set of
metadata for a given entity is organized as a linked list. One special metadataum in
each list is called ghnext and gives the list head for the next entity that hashes to the
same bucket.

9.3. 9P Service

The 9P server in 6fs is generally pretty conventional. In a departure from the libthread
and lib9p design, each instance of the srv loop runs not in an independent process, but
in another thread with all being in the same process. This helps to eliminate a substan-
tial amount of mutex locking that would otherwise be required.

9.4. AoE Support

The AoE target functionality was adapted from the implementation of vblade (an AoE
implementation from Coraid). First, the mainline startup code for vblade was replaced
with calls from the 6fs startup code. This also involved minor changes to allow LUNs to
be created and removed on the fly. Second, the parts of vblade that interacted with the
files backing it were changed to make calls into the 6fs code to make use of its cacheing
and block allocation infrastructure. Third, the configuration information was moved
from being stored in a reserved area at the beginning of the LUN file to the 6fs extensi-
ble metadata. Finally, support was added for the experimental OSD additions to AoE
including support for all the commands listed above.

9.5. NFS Support

The 6fs prototype includes support for NFSv3. Version 3 of the protocol was chosen
because it is nearly universally supported and because significant potential clients did
not support Version 4 at the time of the prototype development.

Normally, we would implement NFS as a service layered on top of an existing file system
or as a protocol translation to 9P. However, because one of the objectives of the current
work is to demonstrate coexistence among disparate file systems, we wish to support
symbolic links, named pipes, UNIX-domain sockets, and device nodes, which are con-
cepts not present in 9P. The extensible metadata design makes this easy, but it
requires that the NFS server have direct access to the metadata. In the present proto-
type, therefore, NFS is implemented as a server integrated directly into the file system
implementation.



Because both the NFS and 9P servers use the same path name and QID hash tables, they
provides two different protocol views of the exact same file system. File types sup-
ported in NFS but not 9P simply appear as empty files to clients viewing the file system
through 9P.

There are two primary features of most NFS servers that are not provided in the current
prototype. First, we do not provide support for hard links. The NFSv3 standard pro-
vides a mechanism for a server to indicate whether it supports each type of link, but
clients that expect hard links to be supported are likely to be disappointed. Second,
NFS implementations generally include a lock daemon to support distributed locking of
files and regions of files. Lock daemon functionality has not yet been included in 6fs.

9.6. Cacheing

The current cacheing mechanism is a pretty typical buffer cache with reference count-
ing. Writes are handled in a write-back fashion with a process writing dirty blocks every
15 seconds. The cache keeps a nominal maximum of 4000 blocks in memory and
blocks are reclaimed following an LRU policy. However, blocks that are dirty or that
have non-zero reference counts are not reclaimed until the next opportunity. There-
fore, it is possible for the number of blocks in the cache to sometimes exceed the nomi-
nal limit of 4000.

9.7. Snapshots

We support snapshots in 6fs when it runs on storage served by devsnap, as reported in
[5]. The multiple root mechanism supports a dump file system that is compatible with
the traditional Plan 9 dump file system. The presence of the snap device is not neces-
sary, however, and 6fs can run directly on a disk partition.

9.8. Console

In addition to listening for TCP 9P connections, for NFS requests, and for AoE messages,
Ofs posts a file descriptor to /srv to provide a textual console interface. Connecting to it
with con -C allows one to interact with 6fs to get current status and to examine meta-
data. The current set of commands supported include:

allow: Effectively turn off all permissions checking. This also allows 9P wstat messages
to change file ownership.

blockuse: Look up a block by number and print out how it is used.
checkalloc: Scan the file system to compare the free map to the actual block usage.

cstat: Print a summary of the current state of the cache. This includes the number of
blocks in the cache, the number of dirty blocks, the number of cache misses, the
recent hit rate, and a reference count histogram.

disallow: Turn on normal permissions checking and prohibit ownership changes by 9P
wstat messages.

dumpusers: Print out all known UID information, both as known to 9P and to NFS.

fixfamilies: Clear out references to children or siblings where the QID doesn’t map to
any metadata.

fixpaths: Clears path hash table entries with no corresponding metadata.
halt: Shut down the file system cleanly.
help: Print a list of the valid commands.

hstat: Print a summary of hash table statistics including number of lookups, number of
collisions, and maximum search depth.

inituid: Initialize the NFS UID table from the file //adm/nfs.



Icreate: Create a LUN given its AoE major and minor numbers and its size in sectors.
lIs:  Print a list of all LUNs giving their AoE target numbers and sizes.

Imeta: Given a LUN’s AoE target number, print out the LUN’s metadata.

Irm: Remove a LUN given its target number.

mpred: Locate the predecessor to a metadata item in the linked list.

mprint: Print the details of a given metadata item.

mstat: Print a summary of metadata management statistics.

newroot: Create a new file system root.

nfsdebug: Control the level of debugging of the NFS file server. An argument value of 0
turns off debugging. Values 1 and 2 select increasingly detailed debugging infor-
mation.

p2q: Show the QID path for a given path name.

p9debug: Turn on or off 9P debugging. The argument is the value assigned to
chatty9p.

phash: Print the hash bucket for the specified path.

pmeta: Print the metadata for the file whose path name is given.

g2m: Show the metadata entry number for a given QID path.

gmeta: Print the metadata for the entity identified by the given QID path.

recovermeta: Check the consistency of and garbage collect the metadata and rebuild
the free list.

revert: Roll back to an earlier snapshot as managed by devsnap.

rmp: Remove a hash table path entry.

rootallow: In the NFS server, give UID 0 the same super user privileges that it tradition-
ally has in UNIX.

rootdisallow: In the NFS server, treat UID 0 as an ordinary user for permissions check-
ing.

setmeta: Set the integer or string value of a metadata item.

setmstruct: Manually overwrite a metadata structure.

setghash: Set a QID to metadata mapping in the hash table.

snap: Take a snapshot through devsnap.

super: Print the contents of the superblock. This includes the magic number, the next
sequential QID path to assign, the number of blocks, the number of free map
blocks, the location of the free map, the status, the location of the first data block,
the number of free blocks, the QID path of the first LUN and the locations and sizes
of the metadata and string pool regions.

sync: Trigger a pass of the write-back process to flush dirty blocks to the disk.

Most of the same console functionality is available by way of the file /mnt/6fsctl. Reads
from this file combine the results of the super command and all stat commands. Writes
to the control file are treated the same as writes to the console with the commands
allow, disallow, Icreate, Irm, rootallow, rootdisallow, and sync being supported.

10. Results

The 6fs prototype has been self-hosting in the sense that editing and compilation of the
code currently take place on copies of the files stored on a 6fs file system accessed with
9P. Similarly, the editing and formatting of versions of this paper were carried out on a
copy of the troff source file stored on 6fs.



The implementation of 6fs is about 10000 lines of code, of which approximately 1000
were taken from vblade, and about 2500 are the integrated NFS server implementation.
A slightly earlier version of the 6fs code can be found in contrib/blstuart/6fs.

As indicated, the most extensive testing and use of this storage system has been via the
9P interface. The AoE block interface has been exercised using both the Plan 9 and the
Linux software initiators to the extent of creating a thinly provisioned LUN, building a
file system on that LUN, and carrying out file system operations on that file system. It
should be noted that the file system so-created is completely independent of that
served by 9P and NFS, but coexists with and allocates blocks from the same pool as the
one they serve. As there currently exist no AoE OSD clients, testing of the object inter-
face has been limited to a small test client written specifically for this project. The file
system served via NFS has been mounted on both MacOSX and Linux and used concur-
rently with 9P clients of the same file system.

Although 6fs should be viewed as still in the prototype stage, there are a few deploy-
ments that suggest that it is at least usable. First, it was integrated into a research ver-
sion of the Coraid SRX product. In that setting, 6fs served a file system over 9P and NFS
while the existing SRX AoE functionality provided block storage. The result was an inte-
grated NAS and SAN appliance which was used internally (though far from stress tested)
at Coraid research. Second, a Plan 9 file server has been configured with 6fs in /boot
and corresponding changes in /sys/src/9/boot/local.c. This system boots taking its
root from 6fs and has spent considerable time serving a 9vx terminal.

11. Future Work

The prototype as described in this paper is a snapshot of a work in progress. As such,
there are a number of developments in the planning for this system. This section
attempts to give a brief summary of some of them.

11.1. Permanent AoE Object Support

The object extension to AoE described here is strictly one designed for research pur-
poses. The needs of a real extension that can be standardized and productized depend
greatly on the needs of the initiator side. In other words, the exactly subset of SCSI OSD
functionality that is needed in AoE depends more on how client OSs use OSD than on
the specifics of our server-side research. Therefore, we leave this issue open for the
time being, with the expectation that those involved with initiator development will play
a critical role in establishing a permanent AoE extension for handling objects.

11.2. Log Structuring

As file system design has developed over the past couple of decades, the benefits of log
structuring/journaling have become evident. These techniques are particularly valuable
in their resilience to power failures and other unexpected events. Because they are
presently well-understood and not necessary for our research objectives, we have not
designed this prototype as either a journaled or a log-structured file system. However,
neither have we made particular design decisions to preclude the use of these tech-
niques. It is expected that a final version of this system (an wfs) would be built around
a log-structured design. However, the stage at which that happens will likely depend on
experience we gain in using the prototype.

11.3. Performance

Up to this point, only a cursory pass has been made at analyzing and enhancing perfor-
mance. In particular, prior to 6fs, some fairly deep changes were made in metadata
handling to bring the overall performance in some small tests to the same general ball-
park as other Plan 9 user-land disk file systems such as kfs and fossil. No attempt has



been made thus far to measure the NFS performance of 6fs or to compare it to other
NFS implementations. It is anticipated that substantial effort will be made in perfor-
mance improvement as the basic functionality stabilizes and in preparation for other
research directions. Because little analysis or measurement has been done to date, we
cannot say where significant improvement is likely to be found.

11.3.1. Hashing PID/OID Directly to QID Path

The first thing that appears to be a glaring inefficiency is the way we handle the object
PID and OIDs. For each request, we have a pair of 64-bit integers that needs to map to
a single 64-bit integer. On the surface, at least, it seems inefficient to make a string
out of the two 64-bit integers, hash the string as a path name, and get the 64-bit QID
path from the hash table, possibly incurring one or two extra disk accesses. So it would
seem there could be benefit from a mechanism that translates directly from the PID/OID
pair to the QID path, particularly if that translation could be done with fewer disk
accesses. On the other hand, whatever mechanism is used, the net effect will still be to
hash 128 bits to 64 bits. It's not clear whether the effects of cacheing are such that the
existing translation is just as good as any other. Whether this inefficiency is significant
and can be improved remains an open question.

11.3.2. Including Full Path Name in Metadata

The design of NFS expects a fairly conventional approach to directory organization and
representation. In particular for the lookup RPC, given a unique ID for a directory and
the final element of a path name, a unique ID for the specified file should be quickly
obtainable. However, in the present design, the concept of a directory is primarily one
of name management and not reflected in data structures or data management. To get
a full path name for hashing, we build the string by traversing up the name tree to the
root, prepending the name of each node found along the way. Although conceptually
such an approach can be made pretty elegant, if the cache contents are unfavorable, it
could require a number of disk accesses. Therefore, the NFS lookup RPC might benefit
from including a file’s full path name in its metadata. Doing so would reduce the path
name construction to a concatenation of the directory’s path name and the final name
element given in the lookup request.

11.3.3. Including Ancestor QID List in Metadata

Because the 9P walk message allows up to 16 path elements to be specified, in princi-
ple, hashing the full path name should allow for faster walks by not processing each
intermediate directory. However, there are a couple of ways in which the semantics of
the walk expect step-by-step directory traversal. First, the response message to a walk
request is specified to include the QIDs of each intermediate directory traversed. Sec-
ond, it is normally expected that the permissions and ownership of each intermediate
directory will determine how far the traversal can be allowed to proceed. In the proto-
type described here, we deal with these issues by traversing upward from the endpoint
of the walk building the QID list along the way. (We currently punt on the permissions
issue.) Of course, such a traversal can require additional disk accesses, depending on
the contents of the cache. Including ancestor QID and permission information in a file’s
metadata would reduce the number of disk accesses if we find the existing approach to
be problematic. This potential improvement is expected to be considered soon in con-
junction with methods of providing correct permissions semantics.

11.4. Distributed Services

The last future direction we discuss here is the one that sparked the work described in
this paper. Experience with a number of storage products has led us to a general dissat-
isfaction with architectures incorporating storage ‘‘heads.” Such devices tend to be



bottlenecks with numerous clients on one side and numerous low-level storage ele-
ments on the other. This kind of architecture is nearly guaranteed to lead to expending
more resources to get lower performance. Instead, we expect that it is possible to
develop storage components that collaborate to present to clients a single, large data
store and at the same time spread the data and communications out among themselves.
The storage system developed here is intended to be the per-node system on which a
headless, distributed storage architecture is built.

12. Conclusion

As with most systems research, few if any of the individual components here lack prece-
dent in earlier file or other data storage designs. However, in our experience, the partic-
ular combination of mechanisms is at the least, unusual. Taken together, these mecha-
nisms lead to a number of uncommon and interesting large-scale characteristics. Expe-
rience with 6fs suggests that it has been a successful endeavor in three ways. First, it
has demonstrated workable techniques for integrating disparate methods of data
access. At one level, the techniques allow us to make available files, blocks, and objects
simultaneously sharing the same pools of storage. Some of those same techniques also
allow us to make files available over multiple protocols that may expect different under-
lying storage features. Second, this prototype has established a clear path for further
research into techniques relevant to stand-alone storage service devices. Finally, indica-
tions are that this work will serve well in its initial goal of providing a platform on which
to carry out distributed data storage service research.
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ABSTRACT

In my previous WiP paper “Building Distributed Industrial Systems
Using Plan 9” | discussed why building distributed industrial control sys-
tems using plan 9 is desirable. In this paper | present a practical applica-
tion for using 9P to multiplex access to devices which speak the ubiqui-
tous Modbus protocol.

1. Introduction

Modicon designed and built the first purpose built industrial control computer
which we now call a programmable logic controller (PLC). Modicon also developed a
protocol to facilitate communication between their controllers called Modbus, a port-
manteau of Modicon bus. Modbus allows the control computer to not only communicate
with other computers but with remote 10 devices. These IO devices can multiplex many
physical signals using interface electronics to transport this data digitally across a few
wires. This greatly reduces wiring and the machine can be reprogrammed at will.

Modbus is one of the earliest examples of what is termed a "fieldbus". Fieldbuses,
which is analogous to a computer bus, allow a computer to read and write remote pro-
cess data from other devices. Modbus has seen widespread adoption leading to the
standard being offered by most automation manufacturers. This makes Modbus a very
attractive protocol for serving over 9P.

2. Modbus Internals

Modbus [1] is a client-server RPC protocol with a defined set of function codes
which a client may call on a server. These function codes are single cycle request-
response which carry out a number of operations such as reading or writing data. Other
function codes deal with device settings, status, file records, and the encapsulation of
other protocols. In addition, the specification allows a vendor to add their own custom
function codes.

Modbus was originally designed to facilitate data transfer between Modicon
machines which were big endian 16-bit word machines. They addressed 64k words of
memory commonly referred to as registers. Register values can represent variables,
packed bits, addresses, packed ASCII strings, or be part of a larger 32 or 64 bit object.
Registers are also used for addressing physical 10 such as digital and analog 10 points.
Bits are used to represent physical digital |0 point states as well as boolean program
variables. Bits are also called coils to represent the coil of a “virtual relay” in a ladder
logic program. Due to this legacy, Modbus process data is transferred as either 16 bit
big endian words or bits.

The bus portion of Modbus was originally based on a multi-drop serial bus where a
single client broadcasts an 8 bit addressed Modbus frame to every server on the bus.
Valid server addresses are in the range 1-247, with 0 being the broadcast address. The



address is also called the Unit ID and only one server may be addressed at a time unless
it’s a broadcast frame.

Each destination server checks the frame using an error checking code, then pro-
cesses the request if the address matches. If the request can not be satisfied an error
code is returned. A successful request results in a return code along with any requested
data. Since only one server may speak at a time, servers can not respond to broadcast
requests, they can only attempt to process them. All versions of the protocol feature
this bus design.

Although Modicon machines were word based the wire protocol is byte based. A
Modbus frame consists of a Modbus Protocol Data Unit (PDU) encapsulated in the fram-
ing data. The framing depends on which of the three protocol versions is used: Modbus
RTU[9], which stands for remote terminal unit, is the original binary protocol. Modbus
ASCII[9] is similar to RTU but encodes the binary values as base-16 ASCIl with frame
delimiting characters. Finally, Modbus TCP is similar to RTU but features a larger header
designed for multiplexed networking of the server. RTU and ASCII are designed to oper-
ate over a multi-drop serial bus such as RS-485 or a single device via RS-232. Modbus
TCP is designed to operate over Ethernet networks using the TCP protocol. A secure
version [2] of the Modbus TCP protocol [3] is specified which encrypts TCP frames using
TLS and X.509 certificates for authentication.

The Modbus PDU is the core of the protocol and contains the RPC request. It
begins with a 1-byte function code followed by one or more 1 - 2 byte parameters and
optional data bytes. The PDU structure for all three variants of the protocol is the same.
The function codes themselves are grouped together by category: data access, diagnos-
tics, and other. Data access consists of function codes for reading and writing bits, 16
bit words, and file records. Diagnostic function codes are only present in serial bus
servers and are used to read status as well as read or write settings. The "other" cate-
gory only specifies two codes for dealing with other fieldbus protocols, which is beyond
the scope of this paper. An example Modbus PDU for reading multiple holding registers
is as follows:

0x03 0x00 0x010 0x00 0x02

The first byte contains the function code followed by two 16 bit integer parameters: the
starting address, 16, and the quantity of registers to be read, 2. The response starts
with the function code copied from the request, a one byte byte-count of the data, 4,
followed by the data consisting of two 16 bit integers, each containing the value 9:

0x03 0x04 0x00 0x09 0x00 0x09

If the above request generates an error the client will return an exception code. The
exception code is communicated by adding 0x80 to the function code number followed
by the exception code:

0x83 0x02

In this case exception code 2 indicates the starting address and quantity of registers
requested is unable to be satisfied.

Data access exposes two kinds of data: read only (RO) bit and word data and
read/write (RW) bit and word data. RO bits are called “input bits” which consist mainly
of status bits or physical digital input points which can not be written. RO word data is
stored in “input registers” which are used to represent variables which are RO such as
analog values from analog to digital converters (ADC). RW bits are “coil bits” and are
used to access both program boolean variables and physical binary outputs. RW regis-
ters are called “holding registers” and are used for operations such as storing program
variables, configuration registers, and data exchange. These registers may overlap or
be part of a completely different memory map.



3. Hardware Used

To build the library and accompanying programs it was necessary to test against
hardware which implements the Modbus protocol. Four devices were used:

. Automation Direct Protos-X modular fieldbus system, a Modbus TCP server.

. Automation Direct EA6 touch screen HMI that speaks Modbus RTU, ASCII, and TCP.
. Automation Direct Click PLC. Its three serial ports speak Modbus RTU and ASCII.

. Morning Group electric meter which speaks Modbus RTU over RS-485.

»

Library Design

The first step for communicating with Modbus is to build or use an existing Mod-
bus library. The library would have to be responsible for the transmission, reception
and processing of Modbus frames as well as error reporting. | decided to write my own
as an exercise and build something native to plan 9. The library design is intended to
be as simple as possible while conforming to the Modbus specification as closely as pos-
sible. It is designed to be media agnostic and performs 10 using file descriptors. It
does not involve itself with process data and only sends and receives packed bits and
word primitives in order to comply with the protocol specification.

While initially studying the protocol | realized the bus architecture is always present
in each of the Modbus frame types - we always communicate the UID, even when using
TCP. This means that Modbus can be thought of as an 8bit addressed bus attached to a
port, conventionally a UART or TCP port.

Bus 10 is performed over two file descriptors, one for transmitting and the other
for receiving. The use of two descriptors makes it possible to use stdin and stdout for
IO enabling mod bus programs to operate over pipes. This is especially useful for
establishing TLS encrypted Modbus TCP sessions using tlssrv(8) [4] which eliminates the
need for writing security code.

The client code begins by calling one of the Modbus function codes to generate a
request. The request is serialized into a buffer in network order which represents the
full Modbus PDU. The buffer is then framed according to the Modbus frame type and
written to the transmit fd. The client code then listens for a response and returns any
received data. A time out mechanism implemented using alarm(2) and notify(2). At the
time of writing the client portion of the code, the library implements only the most com-
monly used word and bit function codes. This is more than enough functionality to read
and write useful data and handle errors.

The library components used to setup a client and call functions on a server are
described below:

The Modbus session is stored in a Modbus struct:

struct Modbus {
inttfd;// transmit fd
intrfd;// receive fd
intmbtype;// MBTCP or MBRTU or MBASCII
uchar*msg;// modbus messge buffer
/* dinternal variables omitted for simplicity */

}

The mbinit () function is called with the transmit and receive file descriptors as well
as the frame type. It allocates memory, copies the parameters and returns a Modbus
struct:

Modbus* mbinit(int txfd, int rxfd, int mbtype);

Calling a function on a Modbus server is achieved using one of the provided function



calls. These calls take the Modbus struct along with a uid (unit id - the bus address of
the Modbus server) and the necessary parameters. The following calls handle reading
and writing register data:

/* RW holding registers */

int mbRdhreg(Modbus *m, uint uid, ul6int *mbreg, uint sa, uint n);
/* RW holding registers */

int mbWrhreg(Modbus *m, uint uid, ul6int *mbreg, uint sa, uint n);
/* RO input registers */

int mbRdireg(Modbus *m, uint uid, ul6int *mbreg, uint sa, uint n);

The following calls handle reading and writing bit data:

/* RW coil bits */
int mbRdcbit(Modbus *m, uint uid, uchar *mbbit, uint sa, uint n);
/* RW coil bits */
int mbWrcbit(Modbus *m, uint uid, uchar *mbbit, uint sa, uint n);
/* RO input bits */
int mbRdibit(Modbus *m, uint uid, uchar *mbbit, uint sa, uint n);

The server code, as is the case for 9P requires the user to attach callback functions
for each function code. The server code starts by listening for Modbus frames accord-
ing to the frame type. The listening code is specific to each frame type and as of writ-
ing, only Modbus TCP is supported. We first start by listening for a frame, then process-
ing it to see if it is valid and if so, send the received UID and PDU to the PDU processing
routine which is responsible for calling the attached callbacks. The UID can be used for
de-multiplexing, allowing a single machine to respond to multiple UIDs.

The library components for building a modbus server uses the same Modbus data
structure with the addition of a data structure which holds the callbacks:

struct Callbacks {
int (*fc01) (Mbreq*);
int (*fc03) (Mbreq*);
int (*fc06) (Mbreq*);
int (*fcl6) (Mbreqg*);
};

The callbacks are named using the interger value of the function code. The Modbus
struct is then passed to the mblisten() function which reads Modbus frames using
the framing defined by mbtype in the Modbus struct. Integer errors returned are
mapped to Modbus exception codes.

5. Client Design

The initial client design used the Modbus library directly, and so the program
spoke Modbus directly to one or more servers. This approach was first used to test the
library during its development. One of the first test cases for the library was a data log-
ging project that polled the Click PLC and recorded variable values in a text file. |
quickly abandoned this approach as using the library directly is very limiting as the pro-
cess speaking to the bus cannot share the bus without extra code. In my opinion such
functionality is beyond the scope of a control or supervisory process, and is needlessly
complex. This lead in to thinking of a way to serve the bus via 9P that would allow mul-
tiple clients to concurrently share the devices on the bus. This abstraction can allow a
bus to be shared across a network or even the internet by multiple clients concurrently.



5.1. Mapping Modbus Data To 9P

Since the Modbus protocol mainly deals with transferring bit and word values
between machines we can think of those functions as read and write mechanisms. For
example the function code "read multiple holding registers”, sends two parameters to
the server in the request: starting address and the number of registers to read. This
corresponds to a 9P read request where in addition to requesting a specific number of
bytes, we also specify a seek offset relative to the beginning of the file.

Conversely, the function code "write multiple registers”, corresponds to a 9P write
call. For bit operations the function codes for reading and writing use the same offset
and address parameter fields.

The first issue encountered, was figuring how to map bits and words to bytes. The
function call parameters map 1:1, but the data sizes do not. 9P is a byte aligned proto-
col whereas Modbus transfers words or packed bits. | started by working out how to
map words. The obvious approach was to map the 64k word address space to a 128k
byte address space. Though this leaves us with the glaring issue of how to handle
requests which are not aligned on 2 bytes? Technically, unaligned reads could be han-
dled by calculating the offset to find the required number of registers to read, and only
return the necessary bytes. Though, after thinking about unaligned writes | realized
there is no reason to read half a register. The simple response is to return an error on
unaligned operations.

In the case of bits, alignment was no longer an issue but a different design chal-
lenge was presented. Bits are aligned by 1-bit so there is no alignment issue, but in a
Modbus frame the bits are packed into bytes. Read(2) and write(2) calls return an inte-
ger value representing the number of successfully written or read bytes. Initially |
thought of returning the raw byte stream from the frame keeping the efficient bit pack-
ing, but this does not map the number of bits successfully read to the number of bytes
read from the file. If we want the return value of pread(2)/pwrite(2) to match
the number of bits returned, then we can return each bit in a byte. At first this may
seem wasteful and inefficient, but this is how boolean types are stored, one bit per byte,
allowing us to treat the data as an array of bools.

5.2. Modbus(4): A 9P File Server Design

Now that we have a way to map sequential Modbus data to files, the file server
function needs to be designed. Since Modbus presents a bus-like hierarchy similar to
that of usb(3), we can implement a similar approach. The usb(3) file server is two-level,
with the root representing the bus, and decimal addressed subdirectories representing
devices on the bus each containing files representing control and data accesses. The
same hierarchy can be applied to Modbus, with the root representing the bus, and UID
numbered subdirectories containing the control, status, register and bit data.

Unlike USB, Modbus does not have an auto discovery or configuration mechanism.
To set the server’s UID or address, a programming device or physical switch are used to
set the Modbus address. Since there is no way to scan for Modbus devices, we will have
to add and remove servers manually. A ctl file in the root will accept control mes-
sages to add and remove server directories. A useful option is to name the directories
to have sane naming in the file system ( e.g. /n/modbus/powermeter/ versus
/n/modbus/12/ ). This applies to each of the supported frame types and allows us
to treat them all as buses. This lets us use the same file server for RTU, ASCIl and TCP
servers with the added bonus of addressing UIDs on a TCP server in order to talk to
devices behind a Modbus TCP bridge.



6. Serving Modbus From Plan 9

Serving the Modbus protocol from a plan 9 machine is useful for letting a plan 9
machine serve data to a Modbus client such as a PLC. This can be facilitated for both
TCP and ASCII framing but not RTU. The frame delimiting mechanism for RTU uses an
inter-frame quiet period not less than 3.5 times the baud rate of the bus. Since RTU
does not communicate the frame length, nor does the uart(3)[5] driver have a way to
delimit frames based on time, we cannot reliably read RTU frames. Because of this,
ASCII framing was specifically developed for reception by general purpose computers,
thus eliminating the quiet time frame delimiting problem.

My initial approach for designing a server is the opposite of the Modbus file server
- to serve a file via Modbus. This approach treats a byte addressable file as memory
representing a series of registers and packed bits. The server is started manually for
serial ports or automatically by listen(8)[6] for a network listener.

Initially 1 had wanted the server file mapping to match the client file server using
four files for input bits, coil bits, input registers, and holding registers. Though after
some though a more pragmatic design was chosen which only serves a single file. The
file layout is big endian so Modbus reads and writes are 1:1 with no data marshaling.
Since bits are packed into bytes, the Modbus library makes it easy to pass a byte array
between the read and write calls. The same applies for registers where each register is
stored as 2 bytes in a buffer. The file to be served is passed to the server program as
an argument along with the offsets for each of the four main data access functions:
input bits, coil bits, input and holding registers. This allows the function code address
space to be overlapped or separated over a larger file to map all 256k bytes of register
space and 16k bytes of bit space.

Example command for running a Modbus listener:
% listenl -t tcp!*!502 mbsrv —-r 8 —-h 16 /mnt/segment/mbdata

No argument is given for bit offsets are given so bit reads start at the beginning of the
file. Word data for input registers starts 8 bytes in while holding registers begin 16
bytes in. The data stored in /mnt/segment/mbdata should be stored big endian
otherwise the client will have to byte swap the data during marshaling.

On-disk files can be used or stored in a ram disk and treated as memory; though
the real intent for this server implementation is to share synthetic files from a seg-
ment(3)[7] device that is attached to a control process. User space 9p servers such as a
control process can export variable memory as a file or a variable database that is also a
file server, and could be used to share variables among multiple control programs. The
interface between all the components is file 10 via 9P, allowing the programs to live any-
where on a network.

7. Modbus Client Program: Putting It All Together

A simple PLC program was written to demonstrate both the Modbus file server
client and listener server. The control logic is implemented as a function pointer state
machine where each access to state returns the next state. A loop mimicking a PLC runs
a series of functions which creates a cyclic control process: read data, run state
machine, write data, check for errors, repeat. We can also optionally insert a sleep() to
limit the execution time. This allows one or more fieldbus calls to read process data
into local variables, run the code using this data, and write that output data back to the
fieldbus(es).

A few portable data marshaling functions facilitate copying of a big endian ordered
byte buffer to ul6int and vice versa. These are part of pread/pwrite() wrappers who’s
signatures are ul6intrdmb (intfd, and ul6intwrmb (intfd, functions read and write a
Modbus file server’s register file and properly marshal the data independent of machine



architecture.

Mapping Modbus to variables in the control code is accomplished using a shared
array of ul6ints. To assign these variables a name an enum is used as an index. The
array is given a short name such as mb[] and an enum holds the index name, e.g.

enum mbvar {
TempSet = 1

};

mb[TempSet] = 70;

The array is first passed to the rdmb () function which fills it with Modbus data, the
state machine runs, and wrmb () functions then write the data to the Modbus servers.

Serving data to a Modbus TCP client, specifically the EA6 HMI, was implemented
using a segment(3) device and the listen server. The segment memory is attached to
the control process before the PLC loop is entered. The same data marshaling functions
are used in the PLC loop to encode the machine dependent ul6int type to and from a
big endian ordered buffer. Since segment(3) memory is also served via a file the Mod-
bus listen server uses this file to access the data stored within.

A PLC example loop using two states to implement a simple thermostat fan controller.
The Modbus variable TempAmb stores the ambient temperature value while TempSet is
the desired set point.

State s;
ul6éint *mb;
int fd;
s = stop;
while(pv[loopcnt]) {
mb[MBrxb] = mbrd(fd, mb + 8, 8, 0);

s = s(mb);
mb[MBtxb] = mbwr(fd, mb, 8, 0);
mb[loopcnt]——;
sleep(slptm);
}
void*
run(void *pm)
{
ul6int *mb = pm;
fprint(2, "runO);
mb[fan] = 1;
if(mb[TempAmb] < mb[TempSet])
return stop;
return run;
}
void*
stop(void *pm)
{

ul6int *mb = pm;

fprint(2, "stopO);

mb[fan] = 0;

if( mb[TempAmb] > mb[TempSet] )
return run;

return go;



8. Conclusion And Further Thoughts

The simple design of the Plan 9 operating system facilitated the rapid development
of test and prototyping programs. The dial(2) library is very simple and intuitive to use
which allowed for a simple fixed function TCP client to be written within a day. The 9P
abstraction provides a very simple OS abstraction allowing me to open a file and read
data from a device without libraries.

My overall goal is to continue working on the Modbus software until it is stable
enough for daily use. From there | want to work on the control code and put more
thought into the PLC process. | want a clean way to share discoverable variables from a
control process using as little code as possible using both files and shared segments.
Eventually other protocols will be investigated such as MQTT and the high performance
EtherCAT protocol. Eventually | hope this software is stable enough to replace commer-
cial control software in certain applications. There is more work to be done and plenty
more ideas to explore.
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ABSTRACT

Outside of the Plan 9 world, there have been a large number of tools written to
detect misuse of memory. Electric Fence, Valgrind, ASAN, MSAN, and many other tools
are available. Plan 9 isn’t entirely left out in the cold, but we can do better. This paper
sketches out one potential tool that could help us.

1. A Partial Taxonomy of Memory Bugs

There are a wide variety of memory safety bugs that people will tend to run into. Some of these
include:

This happens when a variable is read from before it is written to. Our compilers will warn for this in
simple cases, but can do nothing when variables are passed by reference, or when a malloced buffer is used.
An example of an uninitialized memory bug may look something like this:

int v, x;
x = 0;
X t= v;

Here, v contains uninitialized memory. Frustratingly, adding debug prints will often lead to the uninitialized
memory contents changing, which can make this sort of issue frustrating to debug.

This is a relative of uninitialized access, but it can be slightly more insidious. This occurs when a
variable has been malloced and then freed, but is used after it’s freed. After it’s freed, the memory may be
reused for other data structures, which can lead to strange corruption at a distance.

int *m = malloc(sizeof (int));
free(m) ;
*m = 42;

This occurs when accessing outside of an allocated buffer, whether the buffer is on the heap or the
stack. This kind of bug can lead to corrupting the

2. The Core Idea: Shadow Maps

Many of the errors listed above can be detected, at least heuristically, by tracking the state of memory
as the data is accessed. At a cost of two bits per byte of program memory, we can track whether a byte of
memory has been allocated, and whether it has been initialized. If a byte is within the or TEXT segment at
program startup, then it can be assumed valid. A direct call to , must return zeroed memory, so it is also
treated as both allocated and initialized. Memory that comes from or from a stack allocation is be treated as
allocated, but uninitialized.

As the program progresses, a correct program will write to any memory before reading from it later.
Thus, every access to a memory location needs to be instrumented with a shadow map check for the appro-
priate bits.



3. An Emulator for Debugging

There are several ways to implement a shadow map, and to hook it in to the program executed.
ASAN[1] hooks deeply into the compiler, emitting function calls and inline checks. This approach per-
forms relatively well, typically halving performance. This is a high cost, but low enough that it can be
turned on for debugging real workloads. However, the change to implement it on Plan 9 would be intru-
sive. Instead, it seems simpler to implement the memory verification in an emulator. The arm emulator,
‘5e‘, was chosen for this purpose, primarily because in the code, all memory accesses were already passing
through the vaddr function.

Because of this high level of centralization around memory access, the bulk of the code to hook in the
shadow map is below:

bits = MARKALLOC;
if (op & ARD)
bits |= MARKINIT;
checkaccess (s, off, len, bits);
if (op & AWR)
markvalid(s, off, len, MARKINIT) ;

All accesses must touch allocated memory. Instructions that read must additionally check that the
memory has been initialized. If an instruction writes to memory, it sets the initialized bits on the memory,
so future reads are aware that this memory is valid.

This leaves the question of how to adjust the shadow map. The verifying emuator must be aware of
allocations, frees, and similar. Therefore, the emulator uses in order to find the addresses of and other
memory related functions. When the emulator PC hits these functions we pull their arguments out of the
stack and registers, and update the shadow map with the addresses. We record the PC that we are returning
to, and disable tracing within these functions, assuming them to be correct. When the PC returns to the
recorded location, we update the memory map to match the change in memory state.

4. Deficiencies

Currently, the verifying emulator, is very rudimentary. There is a great deal of low hanging fruit for
improvement.

It doesn’t know about the APE allocator. APE programs will not have their memory issues correctly
diagnosed. The best fix for this would likely be removing the separate allocator APE uses, and unifying it
iwth libc.

The emulator doesn’t know about how much stack a function uses. As a result, there is no mecha-
nism for marking the top of stack uninitialized after a function returns, leading to Therefore, the stack will
be marked as initialized when it should be marked uninitialized. Bugs may be missed.

It would be useful to add red zones around global and stack objects in the compiler, in order to allow
easier detection of out of bounds accesses.

5. Possible Extensions

There are a number of directions to explore. In addition to hardening the tool and smoothing out the
basic rough edges, it may be interesting to look into other dynamic verifications that could be done.

For example, TSAN that detects data races and accesses to memory without a held mutex would be
incredibly useful.

Also, now that there is an emulated proof of concept, it may be worth looking into a version that
hooks into the compiler or linker, and produces instrumented native binaries.

6. Availability
The code described is available at https://onlySfans.com/ori/5v/HEAD/info.html
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ABSTRACT

Starting from a port of Inferno to a single microcontroller, work is ongoing to extend sup-
port to a wider group of microcontrollers and small systems based on ARM Cortex-M4 and
Cortex-M7 cores.

Introduction

A port of Inferno to the STM32F405 [1] microcontroller has been available for over a year. Based on an ARM
Cortex-M4 core, this microcontroller provides a basic level of features that makes code written for it applica-
ble to other Cortex-M4 microcontrollers, and also to more powerful systems based on the Cortex-M7 core,
without too much adjustment.

It is unclear how much code could be reused to support other related cores, such as the Cortex-MO0+, which
is used by the RP2040 microcontroller. However, since that microcontroller is already supported by the
Raspberry Pi Pico port [2], no effort has been made to investigate this.

The descriptions that follow briefly cover some implementation issues that affected ports to systems based
on Cortex-M4 and Cortex-M7 cores made during the last year. It may be useful to consult the Wikipedia arti-
cle [3] about ARM Cortex-M cores to learn more about the similarities and differences between them.

Toolchain

The existing ports of Inferno to ARM systems relied on the availability of a regular 32-bit instruction set. In
contrast, Cortex-M4 cores only provide support for Thumb and Thumb-2 instructions, making the use of a
different toolchain necessary: a combination of tc, 5a and t1.

Of these tools, tc and t1 were modified to add support for the floating point instruction set used by Cortex-
M4 cores with the appropriate extension. Additionally, t1 was adjusted to re-enable existing support for com-
piling string constants into the text section of a binary. Depending on the configuration and tools used to
build an Inferno system, this can lead to a substantial reduction in RAM usage at run-time.

Task switching

Cortex-M4 cores differ from traditional ARM cores in both the instruction sets used and in the available pro-
cessor modes. This means that some techniques used by many existing ports of Inferno to ARM systems
are not applicable to these cores. The way that task switching is performed is one area that needed revising
to fit a different processing model.

Existing ARM ports rely on the ability of the processor to switch between the processor modes during excep-
tion handling, using this ability to implement a mechanism for task switching that ensures that setlabel
and gotolabel calls are always called in the same processor mode.

On Cortex-M4 cores, exceptions cause the processor to enter a Handler mode that it can only leave by re-
turning from the exception back to the interrupted code. While it is possible to perform task switching while
running in this mode, the task switching mechanism also needs to be able to run in the normal Thread mode.
As a result, a different mechanism is used to ensure that Thread mode is always used when performing task
switching.

Floating point support

Cortex-M4 cores tend to provide some level of hardware floating point arithmetic support, and this is the
case with the STM32F405 microcontroller. The existing code in ports such as the Raspberry Pi port [4] is
useful in terms of providing a framework for supporting floating point instructions, but required adjustment to
work with the floating point instructions supported by the newer cores.



Use of a floating point.emulator is necessary for Cortex-M4 cores because they only tend to support single
precision arithmetic, making it necessary to trap instructions that operate on double precision values. Many
existing ports tend to rely completely on an emulator to handle all floating point instructions when an unde-
fined instruction exception occurs. This maintains a set of emulated floating point registers associated with
each process. However, since we want to take advantage of the hardware support for floating point, an ap-
proach that maintains the actual registers is used. This relies on the modification of stacked floating point
registers during exceptions.

One simplification made to the floating point emulator is to only use it to handle one undefined instruction at
a time instead of trying to handle as many consecutive instructions as possible. Since supported and unsup-
ported instructions may be mixed together, the additional work of opportunistically checking for consecutive
instructions is time that could be spent letting the hardware either execute them or raise another exception.

One disadvantage to this kind of partial emulation solution is the additional overhead it places on the stack
for the kernel and each process, as space for a full set of floating point registers is reserved on the stack
when an exception occurs. A pure software solution might prove to be sufficient if use of hardware floating
point support doesn’t provide substantially faster floating point arithmetic performance.

It should be noted that Cortex-M7 cores can be provided with double precision floating point units. For these,
either minimal or no emulation is needed.

Memory savings

As described in the previous work [5], some effort was needed to reduce the amount of RAM used by Limbo
modules on a running system. This was achieved by expanding the code sections of Dis files during compi-
lation of an Inferno system and running them directly from flash memory.

It was observed that the freezing process had the effect of moving much of the root file system from the data
section to the text section of the binary. This has the effect of reducing the initial RAM overhead of the sys-
tem. To take advantage of this feature for general use, the data2texts utility was created to replace the
existing data2s utility which normally translates binary data into assembly language DATA structures for
compilation into the system. This variant simply uses TEXT directives instead, enabling the data to be stored
alongside kernel code.

Additional savings to the initial RAM footprint of the system are obtained by passing the —t option with the
t1 loader. This has the effect of placing string constants in the text section of the binary, again reducing the
amount of data copied into RAM.

The following table shows the effect of using data2texts instead of data2s to encode data, and the larger
effect of including string constants in the text section of the binary for a microcontroller with 384 kilobytes of
RAM. The upper part of the table shows the effect on a system with non-frozen Limbo modules; the lower
part shows the effect with frozen Limbo modules.

Data strings Text strings
data2s | data2texts | data2s | data2texts
kernel 477272 477272 477272 477272

maxsize | 165120 324608 339712 339968
hw 132832 132832 132832 132832

Non-frozen
Limbo modules

kernel 614584 614608 614584 614608
maxsize | 309504 324608 339712 339968
hw 94048 94048 94048 94048

Frozen
Limbo modules

The kernel rows show the size of the system binary in bytes, containing the kernel and root file system. With
non-frozen modules, this value is not affected by the changes, and there is only a small effect on the system
with frozen modules. What is noticeable is the increase in size of the binary when modules are frozen.



The maxsize rows show the number of bytes of RAM available to the system. Using the data2texts utility
provides a memory saving that is largely overshadowed by the effect of compiling string constants into the
kernel text. Since there is an overlap in these approaches, the combination of them yields only a marginal
additional memory saving. Freezing Limbo modules also provides a similar benefit, but only when these
other approaches are not used.

Where freezing modules provides a distinct benefit is in the run-time use of RAM by modules. The hw rows
show the corresponding values in bytes from the summary provided by reading the /dev/memory file, indi-
cating the allocation high water mark after running the 1s utility. Note that this is only affected by the use of
frozen modules, with the other approaches having no effect on the run-time RAM usage. This is where we
see clear RAM savings by eliminating the need to allocate memory for parts of the module loading process
at run-time.

New platforms

The initial choice of the STM32F405 microcontroller as a target for Inferno was determined by its low RAM
provision, but was also a pragmatic decision based on the perceived effort needed to port Inferno to the AT-
SAMD51 J20 microcontroller. Returning to this microcontroller later, the port was not as difficult as expected.

Similar microcontrollers with more RAM were obtained to determine how much of Inferno’s functionality
could be used on these small devices. The first of these was the SparkFun MicroMod Artemis processor,
which uses an Ambiq Apollo3 core. In an attempt to expand coverage to related processors, a development
board with an i.MX RT1062 processor was also obtained due to its improved features and its use of a Cor-
tex-M7 core.

Generally, the limiting factors to a viable Inferno port appear to be the amount of flash memory and RAM
provided by a target. Informal tests have indicated that about 256KB is the minimum amount of flash mem-
ory that a system image needs for Thumb-2 code, and probably at least 512KB would be a comfortable mini-
mum. Although some activities are possible with less than 256KB of RAM, there is more room for experi-
mentation with 384KB or greater.

Since the ports created after the first used the initial port as a base, the result was four ports with a fair
amount of duplicated code. To make this easier to work with, the shared code was consolidated in a single
cortexm directory in much the same way that the sa1110 directory contains common code for a number of
older related ports.

Conclusion and future work

Porting Inferno to microcontrollers based on ARM Cortex-M cores continues to be an interesting activity, with
plenty of scope for improvements and optimisations. It is hoped that future work will help to reduce Inferno’s
memory footprint even further, making it possible to run it on a wider range of microcontrollers.

The source code associated with this work can be found in the following repository:
https://github.com/dboddie/inferno-os/tree/cortexm
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Adapting Plan 9's listen to GNU Guix

Edouard Klein

Abstract

Here is a comprehensive adaptation of Plan 9's elegant network service management design to the Linux
environment, focusing on the Guix System distribution. The proposed listen utility initiates network
services by executing files named after the protocol and port they serve. This approach offers significant
advantages over traditional Linux setups: per-user, per-port, and per-program allocation of ports, to be
contrasted with the binary privileged/unprivileged model on Linux; enhanced security through process iso-
lation; and network transparency for service scripts. We also detail the development of auxiliary tools and
contributions such as a Go-based 9P2000.L FUSE client needed for container isolation, improvement to the
p9ufs 9P2000.L server, and a network-transparent implementation of the finger protocol. We straighfor-
wardly achieve a level of simplicity and security that is currently only achievable on Linux with complex
configurations or not at all. The paper concludes with reflections on the challenges and limitations encoun-
tered in adapting Plan 9's models to the Linux platform, pointing out the inherent difficulties in reconciling
Linux's legacy structures with Plan 9's more streamlined and network-native approach.

1. Introduction

Plan 9 uses a piece of software called 1isten to start network services.

Network services are defined by the presence, in a directory watched by listen, of executable files whose
name is of the form <protocol><port>.

For example, the tcp7 file implements the echo protocol on port 7.

When a client connects on one of the ports, 1isten starts the corresponding executable file, and

e forwards incoming data from the connection to the process’ stdin,
e forwards outgoing data from the process' stdout back to the connection.
This elegant design presents three advantages over the current state of affairs on Linux:

e Instead of a root-owned configuration file, the use of one file per port allows a per-user, per-port, per-
program allocation of ports (see section [B]).

e Plan 9 being Plan 9, each process gets its own namespace, that is, its own view of the system resources,
isolated from other processes. Such a level of security is available on Linux only through the use of

containers (see sections and .

e Network services written for listen are said to be network-transparent: they need not contain any
network code at all. As they read and write on the standard streams, they require less work to write than
the same networked service would; they can rely on the plethora of existing command line filters that,
too, read from stdin and write to stdout. An example implementation of echo (section and finger
(section are provided, that illustrate this concept.

This document describes our effort in adapting this design to Linux in general and to the Guix System
distribution in particular.

The deployment of our version of 1listen on the—dam.orgE] frames the exposition that follows. However,
it should be noted that 1isten is not dam-specific, or even Guix System (the operating system) specific. While
it requires GNU Guix (the package manager, see section to be installed, it can bf] deployed on other Linux
distributions than Guix System. Doing so requires careful system administration and painful wrangling with
systemd. Guix System (the operating system) avoids this thanks to its declarative configuration primitives (see
section [4)) and absence of systemd.

The version of 1listen presented here is in active use on the-dam.org, and the echo (section , finger
(section [6.2)), and git (section services are reachable with, respectively:

our public access UNIX (“PubNix") server, running Guix System with Beaver Labs’ guix channel
2and has been, on my own workstation running Arch



echo hello | nc the-dam.org 7
echo | nc the-dam.org 79
git clone ’git://the-dam.org/listen’

2. Contributions

2.1. listen
The work presented herein yielded more than the 1isten bash script one can download with:

git clone git@the-dam.org:listen

2.2. £29p
A Golang 9P2000.L FUSE client was developed from scratch:

git clone git@the-dam.org:f29p

This client is needed to mount 9P servers in the containers in which listen isolates the network services
]Ssection [7.3). It is a seldom documented fact of Linux that unprivileged mounting is reserved to a select few
ilesystems, among which 9P is not present. No other piece of software has ever been made public that allows
one to mount a 9P2000.L server from within a Linux container.

2.3. p9ufs

A pull request implementing UnlinkAt was merged into p9ufs, a Golang 9P2000.L server: https://github.
com/hugelgupf/p9/pull/87/files

2.4. os/listen

listen requires deep changes in the system it is installed on (for example, a change in the default privileged
port ranges, see section [B]), but we wrote a set of operating configuration functions (see section [4)) that makes

installing 1isten a literal one-line change in a configuration file. These functions can be added to Guix System
through our channel (Klein [2023).

(channel
(name ’beaverlabs)
(url "https://gitlab.com/edouardklein/guix")
(branch "beaverlabs"))

2.5. fingerd

A network-transparent implementation of finger (see section [6.2)) was developed to work with our listen. It
should work with Plan 9's 1isten as well, as soon as somebody writes a Python 3 interpreter for Plan 9, which
should be right around the time we sunset IPv4 globally.

Fetch it with:

git clone git@the-dam.org:fingerd
3. Glossary
Before we delve any further into technical explanations, we need to make explicit that there are three sets of

words whose meaning is highly ambiguous.
This ambiguity needs to be removed lest the article become very confusing for the reader.


https://github.com/hugelgupf/p9/pull/87/files
https://github.com/hugelgupf/p9/pull/87/files

3.1. Namespace

First comes namespace. A namespace in Plan 9 is the view a process has of the filesystem. Because every
system resource is available as a file, a namespace is the view a process has of the system's resources (Pike
et al. 1993)).

On Linux, namespaces are an isolation mechanism bolted upon processes. Linux processes are not, by
default, as isolated from one another as they are in Plan 9.

Because on Linux everything is definitely not a file, there are multiple kinds of namespaces. One can be in
a network namespace, a mount namespace, a user namespace, etc. (Kerrisk 2013; \unshare(1) — Linux User's
Manual|2023; \namespaces(7) — Linux User's Manual [2023))

To remove this ambiguity, we will explicitly specify "Linux namespace”’, “Linux mount namespace’, etc. or
use the improper term of containers when talking about the specific Linux isolation mechanism, and reserve
the bare namespace term for the Plan 9 generic notion of a process’ view of the system resources.

When we talk about the namespace of a Linux process, we talk about what it sees of the underlying system.
This view is constructed with the help of different, potentially nested Linux namespaces, and 9P mounts through
FUSE.

3.2. Guix

GNU Guix is a package manager (Courtés [2013)), that can be installed on any Linux distribution.

Guix System is a Linux distribution that uses GNU Shepherd as its daemon manager, lacks systemd, and
of course uses Guix as its package manager. It goes further by providing a declarative configuration system for
the whole operating system, with atomic updates, roll-backs, etc. (Neidhart [2019)

Waters are muddied by the fact that the guix system command, provided by GNU Guix the package
manager (which can be installed on any Linux distribution) allows one to instantiate a Guix System operating
system as a VM, a container, a docker image, etc.

We will use Guix to refer to the package manager, and Guix System to the operating system.

3.3. Service

In UNIX parlance, a service is a background process (a daemon), typically launched by a service manager
(SysVinit, rc, shepherd, systemd, etc.), examples include network services such as a web server, but also the
cron daemon.

In the context of listen, services refer to the network services that 1isten manages.

On Guix System, a service is a broader notion, that encompasses network services, daemons, but also any
aspect of the system configuration, such as udev rules, user accounts, etc.

We will always specify, unless the context makes it absolutely clear, whether we are talking about net-
work/listen services, or Guix services.

We will avoid calling UNIX services services, and use daemon instead.

4. Operating system configuration functions

As mentioned in section [2| listen is not merely a bash script, but also a set of deep modifications to the
operating system it runs on:

e installing listen, £29p and pOufs;
e creating nobody-like user and group listen;
e Making, chowning, and chmoding the following directories, according to some port attribution policy:

— /srv/listen/, owned by root:root, with perms ruxr-xr-x,

% in it, the tcpXXX and tcpXXX.namespace scripts, owned by e.g. alice:listen, with perms
TW.T-.--;

— /run/listen/tcpXXX/, owned by e.g. alice:listen, with perms ruxrwx--;
— /run/9p/, owned by root:root, with perms ruxrwxrwt;
— /var/log/listen/tcpXXX/, owned by e.g. alice:listen, with perms r-xrwx--.

e creating the default guix profile in /run/listen/profile;

e making sure /run/listen is deleted on reboot;



e setting the available source ports for outgoing tcp connections to 49152-65535 away from its default of
32768-60999;

e setting the privileged port range to 0-48152 away from its default of 0-1024;

e setting the cap_net_bind_service +p on the with-cap-bind wrapper, and making it r-x---- for
listen:listen.

e creating, for each user, an HTTPS redirect from e.g. https://alice.example.con to the first port of
alice's range;

e creating services aliases as in section[7.5} e.g. /srv/listen/finger -> /srv/listen/tcp79;
e starting the 1isten daemon on boot,
e but only after all the daemon it needs have started first.

While it is technically possible to apply these modifications to a Linux system using the usual system
administration tools (sysctl, adduser, chown, etc.), it would be an ill-advised tall order.

Using our additions to Guix System's declarative configuration mechanism is easier and safer.

Familiarity with GNU Guix, Guix System, or GNU Guile is not expected from the reader, as the examples
provided here are quite self-explanatory to anyone with any programming experience. Just understand that
what is written £ (a, b) in most languages is (f a b) in GNU Guile, and that the last expression of a function
is its return value.

The provided primitives are based on an extension of Guix System'’s configuration mechanism. Guix System
relies on a directed acyclic graph: nodes being Guix System services, and an edge from e.g. nginx to account
denoting that installing nginx will create a user account on the system. This graph is foldecE] into a script,
collapsing all the extensions into a GNU Guile script that actually changes the system so that it conforms exactly
to the declaration (Courtés 2015} Service Composition — (GNU Guix Reference Manual)2024).

While powerful, this mechanism is hard to extend as it requires familiarity with both Guix System and GNU
Guile. We abstracted it away thanks to the use of functions that take an operating-system record as an argument,
and return a modified operating-system record. These functions can thus be chained, human-centipede (Six
2010) style, in a syntax much more familiar to users of imperative languages, not unlike a Dockerfile, while
keeping all the power of the Guix System service-graph mechanism.

5. A fine-grained access control API for ports

Without listen, ports on Linux fall under the coarse dichotomy of privileged and unprivileged. Privileged
ports are traditionally ports below 1024 E] One used to need to be root to bind to a privileged port, gaining
privileged access to the whole operating system as a side effect. This changed when Linux got a new feature
called capabilities. The CAP_NET_BIND_SERVICE capability allow one to bind to privileged ports on a per-
program basis. Having this capabilities grant no other rights ; but this capability applies to all privileged ports:
CAP_NET_BIND_SERVICE accepts no port-based configuration.

listen solves this problem because it equates ports with file names. Using UNIX's file access control API
(chown, chmod, etc.), one controls access to ports on a per-port, per-user (and in turn, with the setuid bit,
per-program as well) basis.

By keeping an empty, world-writable /srv/listen/ directory, root can let any user bind to any port.

At the other end of the spectrum, root can create all the tcpx files (from tcpl to tcp65535, one per port),
and chown each of them to whomever should control the associated port. The files remain non executable,
until the appropriate user wants to activate the server, at which point she runs chmod +x on the file.

On the-dam. org, the last few bits of the hash of the username yields a port number, and we give that user
a 12-port range starting at the number derived from the hash. This let us avoid any kind of bookkeeping for
port allocation: users come and go, each get an automatically assigned range with a negligible risk of collision.
We also offer an https redirection from e.g. https://alice.the-dam.org to the-dam.org's first port in
alice's range.

This port allocation is automatically derived from the list of human users any time a user is added or
removed, with no need for human intervention.

3in the functional programming sense of fold
*but a sysctl call to set the net.ipv4.ip_unprivileged_port_start kernel variable will change that.


https://alice.the-dam.org

6. Network service scripts

Let's see how listen works on the-dam.org, from the point of view of the user. The implementation is
detailed later, in section [7}
We will study three different network services in increasing order of complexity:

e the echo service on port 7, which echoes back whatever the clients send,

e the finger service on port 79, implemented as a simple Python script reading and writing to and from
the standard streams,

e the git protocol on port 9418, implemented with git deamon, which insists on listening on a port instead
of using the standard streams.

In contrast with what almost always happen on Linux, where processes gets a full view of the system limited
only by its owner’s identity, 1isten launches network service scripts in an extremely limited namespace, as Plan
9's listen does. Our listen must use a container to achieve this while Plan 9's fork (fork(2) — 9front’s
Manual|2024) offers this kind of isolation for free. Network services running in an empty namespace are not
very usetful. This section shows how users can populate their network service's namespace.

6.1. Echo service
The echo protocol is implemented by linking cat to /srv/listen/tcpT:

1s -1 /srv/listen/tcp7?
lrwxrwxrwx 1 root root 65 Mar 21 21:14 /srv/listen/tcp7 -> \
/gnu/store/mpppOhwxizx9g9pikwcvvshb2ffxyq7p-coreutils-9.1/bin/cat

This link is created by Beaver Lab's 1isten/echo function:

(define (listen/echo os)
"Return a copy of 0S, in which listen’s echo (tcp7) service is active."
(extend-service
os
activation
#~ (begin
(when (file-exists? "/srv/listen/tcp7")
(delete-file "/srv/listen/tcp7"))
(symlink #$(file-append coreutils "/bin/cat") "/srv/listen/tcp7"))))

This service can run in the empty namespace that listen provides by default.

6.2. The finger service

The above echo example ranks among the simplest things one can do with 1isten. Let's study now a more
complex service, the finger service listening on port 79. Our finger implementation is a simple 68-lines python

script that reads a query on its standard input, parses it, sets some of the env vars from the CGI specificatiorﬂ
and execs the requested script in /srv/finger/. This script’s output is what the remote finger client gets.
This network service is active now, and one can simply query it with a finger client or by running:

echo | nc the-dam.org 79

to get a list of the available user names.
finger illustrates how to clear two hurdles most real life use-case will meet:

e it needs to access data from outside the container,

e it relies on custom software, unavailable from the vanilla version of guix provided by listen's container.

®Allowing queries like finger ’hello?name=alice&greeting=Howdy@the-dam.org’
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Figure 1: The container in which 1isten runs the echo service. From the point of view of the service script
(cat), data comes from the standard input, and the system is almost completely empty.

Accessing data from outside listen’s container is done, as it is in Plan 9, by mounting 9P servers in
the service's namespace.

listen will look for a /srv/finger/tcp79.namespace file. This is not, as it is in Plan 9, a namespace
file understood by newns or addns (auth(2) — 9front’s Manual [2024). It is a proper script, called by listen,
and expected to setup its own environment, its own view of the filesystem, and its own network before calling
exec $0, relinquishing control to a command built by listen.

The default namespace script, /srv/finger/listen.namespace, called in the absence of a service-specific
script, is quite simple:

#!/gnu/store/aslr8ym1df4j80ikabpfxybkbfv4iz3w-bash-5.1.16/bin/bash

set -euo pipefail

# This is the default namespace file for listen services. This is where you
# mount the 9P services all your listen services need.

exec "$0" # Once done, call the command provided as an argument by listen

The declarative configuration will not overwrite this file if it already exists, making it easy to configure the
default namespace in a site-specific manner.
finger's namespace file contains:

#!/usr/bin/env bash

set -euo pipefail

mkdir -p /srv/finger

f29p unix!/srv/9p/finger /srv/finger &
exec "$o"

This mounts the 9P server listening on /srv/9p/finger to /srv/finger.
This 9P server daemon is started and managed by shepherd, Guix System’s daemon manager, thanks to a
call to os/9p-serve in the function that configures finger:

(os/9p-serve "/srv/finger/" "/srv/9p/finger" #:name ’9p-finger
#:user "listen" #:owner "listen" #:group "listen" #:mode "700")

This call creates a socket on /srv/9p/finger. On the socket listens an instance of p9ufs, a modern Golang
9P2000.L implementation. This process is owned by listen, and so is the socket.

On Plan 9, namespace operations fail or succeed thanks to the authentication mechanism embedded in
OP. This authentication mechanism relies on the factotum process mounted on /mnt/factotum having the
required credentials (Cox et al. [2002).



9p-serve read-only container listen container

Figure 2: The containers in which 1listen runs the finger service: the p9ufs 9P server has read-only access to
the global /srv/finger directory, and this access is transferred via the /run/9p/finger socket to the tcp79
network service script, which 9P-FUSE-mounts the server in its own namespace. Note that here, as in echo,
the network service script has no access to the internet and receives data on its standard input, and sends data
on its standard output.

Despite a previous attempt at porting this mechanism to Linux (Klein and Gette [2023)), this mechanism
is not readily available to 1listen. Instead, to control the operations on files outside of the service container,
listen relies on the ownership of the p9ufs process and the ownership and permissions of the socket file.

In this particular case, 1isten gets a read-only by default (one has to pass #:read-write "1" to os/9p-serve
to get read-write access) view of /srv/finger, with the same rights as it would have outside of the container.
In the next section we will see an example of user git “lending” its read rights on /srv/git to listen (which
can't read /srv/git whose owner, group, and mode are git:users r-xrwx--).

This choice makes it possible for e.g. alice to provide finger information to her servermates only, who,
belonging to the users group, may call her script while logged-in, whereas anonymous users from the internet,
being confined to listen's identity, won't see her script as executable:

1ls -1 /srv/finger/alice
-rwxr-x--- 1 alice users 121 Mar 18 10:57 /srv/finger/alice

Using custom software is done with a Guix profile. While on Plan 9 one makes software accessible by
binding various directories over /bin, the story is more involved on Linux. Due to constraints imposed by
ubiquitous dynamic linking, interpreted languages, and mostly-standardized-but-not-quite defaults paths, one
has to rely on a myriad of search-paths. search-paths are environment variables that tell the software where to
find the resources it needs.

guix can setup profiles (Courtés 2018)) that are links to its immutable, content-addressed, store. In it are
synthetic directories with links to all the needed resources (them, too, living in the store), as well as a profile
script that will set the search-paths to those resources.

listen will load the profile in /run/listen/tcp79/profile before calling the service namespace script
and the service script. A default profile is used if /run/listen/tcpXXX/profile does not exists.

In the case of finger, the profile is created by a call to os/profile:

(os/profile "/run/listen/tcp79/profile"
#:name ’finger-profile
#:packages ’("python" "the-dam-org-f29p"))

which sets up two packages: the £29p 9P FUSE client, and the Python interpreter.

6.3. The git daemon

As revealed by an analysis of the fourth edition source code, 9front’s source code, and a question asked on 9fans
(Content of your /rc/bin/service or /dis/svc 7 — 9fans thread |2024)), Plan 9 relies, for the following protocols
(as well as a few others), on servers reading and writing on the standard streams: ftp, (ssh), telnet, smtp, http,
pop, imap, samba, rlogin, Ip, 9P (of course).



Some of those servers, such as rc-httpd have been ported to BSD or Linux, but others rely for example
on /net (Presotto and Winterbottom [1993)), which does not exist (yet ?) on Linux.

On the-dam.org, git repositories are made available through a user called git, as which anybody can connect
through ssh, e.g.:

git clone git@the-dam.org:listen

However, a bug (Can't clone a git repo over anonymous SSH — issues.guix.gnu.org|[2023)) prevents Guix
from using this kind of access, and so we must open port 9418 to let git use its own unauthenticated, unencrypted
protocol (but Guix checksums the code after fetching so those two points are not that big of a deal).

Git does provide an easy way to run a server speaking this protocol: just run git daemon. However, git
daemon binds to port 9418, and does not use the standard streams.

One could extract the git protocol from the code and create a standalone standard stream network trans-
parent server, but that is a lot of work.

What we do instead is abuse the namespace script. Instead of relinquishing control to a command crafted
by listen, here is what tcp9418.namespace does:

#!/usr/bin/env bash

set -euxo pipefail

mkdir -p /srv/git

f29p unix!/srv/9p/git /srv/git &

ip link set lo up

git daemon --base-path=/srv/git --export-all&

exec socat -dd UNIX-listen:/run/socket,fork TCP-CONNECT:127.0.0.1:9418

Lines 3 and 4 play the same role as for finger: making the necessary data available to the service by
mounting a 9P server. '
Said 9P server is started thanks to this line in the operating system configuration function 1isten/git-daemon:

(os/9p-serve "/srv/git/" "/srv/9p/git" #:name ’9p-git
#:user "git" #:owner "listen" #:group "listen" #:mode "700")

Here we see that only user 1isten can use the socket to mount the 9P server, but the process listening on the
other end is not owned by listen but by git. This is because listen is not privileged enough to read the
actual /srv/git. By making user git run the 9P server, listen gets exactly the kind of access it needs, on
a very specific and well-defined subset of the global filesystem.

Line 5 of the git daemon namespace script sets up a loopback network interface. Behind the generic
“container” term hide Linux’ namespaces (same name as Plan 9, different feature). Important here is a Linux
network namespace, that makes a process believe it owns all network interfaces (it does, but not the actual
ones). Setting a dummy loopback interface on line 5 lets us start git daemon on line 6, where it will happily
listen on port 9418, blissfully unaware that nobody but its parent can see the interface it is listening on.

Instead of calling exec $@ as expected, the namespace script instead execs socat in such a way than any
connection to the /run/socket socket is forwarded to the container's port 9418. Creating this socket is the
signal 1isten is waiting for before it starts forwarding incoming data from the internet to the service. Failure
to make it appear within a handful of second is a sign that the service failed to start.

Usually 1isten calls socat inside the container like so:

socat -dd UNIX-listen:/run/socket,fork EXEC:/srv/$service

where /srv/$service is of course the service script, which will communicate with the internet through its
standard stream.

By hijacking the expected behaviour and calling socat by itself, tcp9418.namespace can forward data to
git daemon's port instead.

As for the tcp9418 script, it is just a link to true, it is never called anyway, it is only used so that by
detecting its presence listen will start the service.

To make git, ip, etc. available to the service, /run/listen/tcp9418/profile is created by a call to:

(os/profile "/run/listen/tcp9418/profile"
#:name ’git-profile
#:packages ’("git" "iproute2" "coreutils" "bash" "socat"
"the-dam-org-£29p"))
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Figure 3: The p9ufs 9P server has read-only access to the global /srv/git directory, and is owned by the
git user (user listen wouldn't be able to read /srv/git). This access is transferred, via the /run/9p/git
socket and a 9P FUSE mount, to the namespace of the git service script, itself owned by listen. The git
service script is itself never started, instead the /srv/tcp9418.namespace sets up a loopack network interface,
starts the git daemon, and hijacks the usual procedure by launching socat, instead of relinquishing control to
listen. This allows the incoming data to be redirected to the container’s port 9418 instead of /srv/tcp9418’s
standard streams.

6.4. To recap

From the user’s point of view, service scripts are fully network transparent. They read data on their standard
input and write answers on their standard output. One instance of the script will be launched for each new
connection.

Service script may specify software dependencies by setting a Guix profile in /run/listen/tcpXXX/profile,
either manually (by calling guix install --profile=/run/listen/tcpXXX/profile ...) or with the
declarative operating system configuration function os/profile.

Service scripts are run in a container fully isolated from the rest of the system. To access data from
the outside, one mounts a 9P server in the service's companion namespace script. This 9P server can be
started manually (calling p9ufs), or through the use of the declarative operating system configuration function
os/9p-serve.

Abusing the service namespace script is possible to let non-network transparent servers run without having
to rewrite them to use the standard streams. This facility allows typical web-applications to be run with no
modifications. the-dam.org redirects https://alice.the-dam.org to alice's first port in her range, and
does so for all users, making web application deployment easy, and rootless.

6.5. To go further

Additional configuration abstractions are available, for example the unprivileged counterparts to os/profile
and os/9p-serve are home/profile and home/9p-serve. They allow non-root users to run their own 9P
servers and create their own profile, so that the service script they own can access them without root having
to intervene. Describing them is outside the scope of this document, but they are available to the-dam.org
users.

Also, the register-listen-service function is available to inform the shepherd that some daemons
(typically, the 9P servers) shall be started before 1listen.

The bareness of the container in which the service script runs provides two main advantages:

e |t increases security by isolating the service script from the rest of the system. An attacker gaining remote
code execution in the container has no obvious way to impact the rest of the system except a denial of
service through resource exhaustion (e.g. a fork bomb.).

e It forces the explicit declaration of all used resources (software dependencies, files) and processes (in
our example, the git serverR. This explicitness makes it trivial to run the exact same script in a slightly
different container for development, testing, or failover purposes.



7. How listen works

7.1. Configuration

listen will loop over the files in /srv/listen/ whose name matches tcpXXX where XXX denotes a port
number.
When it finds an executable file, for example /srv/listen/tcp7, listen:

e creates an isolated container in which it;

e activates the service's profile at /run/listen/tcp7/profile if it exists, or the default one at /run/listen/profile
otherwise,

e runs the service namespace script /srv/listen/tcp7.namespace if it exists, the default namspace script
/srv/listen/listen.namespace otherwise,

e runs socat to link the /run/listen/tcp7/socket socket to the service script /srv/listen/tcp7
standard streams,

e logs the standard error in /var/log/listen/tcp7/service.log.

e Then outside the container, it launches a daemon that will listen on port 7, and forward data back and
forth to and from the service script (via /run/listen/tcp7/socket).

listen uses inotify to watch the /srv/listen/ dir for changes. When notified of a change, listen
scans the whole directory again:

e listen leaves alone running daemons

— whose service script remains executable,

— and whose content has not changed since it startecﬂ
e listen restarts running daemons

— whose service remains executable,
— but whose content changed since they started,

e listen stops every running daemon whose service script has lost its execution bit.

e listen starts every service script that has become executable.

7.2. First security layer: almost unprivileged user listen

The listen process runs owned by nobody-like user listen. This protects user data from unauthorized reads
or writes should 1isten become compromised or misbehaving.
As a second line of defence, we would have liked 1isten to run in a container, seeing of the system only

what its job requires [Z]:
e GNU Guix's paths:

— the read only store /gnu/store/ where GNU Guix installs all software,
— the /var/guix/ dir to communicate with the guix daemon,

e the service scripts in /srv/listen/,
e the log directory in /var/log/listen,
e a runtime directory in /run/listen/,

e the host's network.

5To achieve this, listen caches the hash of the script at start time, and compares the current hash with the cached one during
the new scan.
"Note that Plan 9 or Inferno make this trivial
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Figure 4: listen's container prevents damage, even when the service process (here cat), gets compromised.

Alas, Linux mirrors our low-growth,high-capital-returns economy: privilege remains an inherited property
(Piketty and Zucman 2015). Despite Linux namespaces and capabilities, this inheritance model prevents un-
privileged access to non-file resources like ports from a container [personal communication with the kernel
developers]. One example: Linux does not honor setuid or setcap binaries within containers. Solving this
issue would require

e either moving away from the inheritable root-owns-everything model, or its somewhat finer-grained ca-
pabilities substitute,

e or exposing non-file resources like ports as files.

We must for now fall back on basic Linux inter-process isolation.

To prevent any other user from messing with the ports 1isten manages, we set all ports as privileged.

Despite their complexity and coarse-grainedness, we make use of capabilities: user 1isten can remain wholly
unprivileged but for its ability to bind to all ports. A good step in the right direction from inetd mandatorily
running as root !

We use Linux capabilities to grant user listen the right to bind to privileged ports (i.e. all the ports),
using a setcap-ed wrapper named with-cap-bind, that only user listen can execute.

7.3. Second security layer: service script containerization

Despite 1isten having quite a low footprint on the system, it remains a sensitive target:
e it can access the internet,
e it can listen on any port,
e it can kill or mess with existing service script processes.

Yet, the service script processes constitute a more probable target than listen itself. Indeed they do not
just pass data around as 1listen does: they handle this untrusted user data. Pirates use complex operations
on untrusted data, e.g. parsing, as a typical attack route.

Because service scripts present a big attack surface, they must run in an environment so isolated that a full
takeover would not negatively impact the rest of the system much.

To this effect they run in containers. GNU Guix's guix shell creates the service containers. They only
expose:



e GNU Guix paths,
e the service-specific (e.g. /run/listen/tcp7) runtime directory,
e the service-specific (e.g. /var/log/listen/tcp7) log directory,

Note that the script can not access the network | Communication with the outside happens through the
UNIX domain socket /run/listen/tcp7/socket.

7.4. Passing data to the unnetworked daemon

The /srv/listen/tcp* service scripts get their data via the /run/listen/tcp*/socket ﬁ socket.

The brilliant utility socat acts as plumbing between any two kinds of process input/output (sockets, files,
standard input/output/error, etc.).

For e.g. port 7, 1isten calls it this way:

/run/setuid-programs/with-cap-bind socat -dd \
TCP4-LISTEN:7,fork,reuseaddr \
UNIX-connect:/run/7/socket \
>> /var/log/tcp7/listen.log 2>&1 &

socat runs with the following wrapper, arguments, and options:
with-cap-bind grants socat the right to bind to privileged ports (see section [7.2).
-dd enables logging the remote IP addresses. This then feeds tools like fail2ban to react against abuse.
fork connect to the UNIX domain socket each time a client connects to the tcp socket.

reuseaddr the socat daemon might die with its TCP socket on port 7 in the TIME_WAIT state. With the
socket in this state, no new socat daemon can start again: it would get an “address already in use” error.
Going out of the TIME_WAIT state can take up to 4 minutes. To avoid such a delay, socat ignores the
TIME_WAIT state thanks to the reuseaddr option.

Interested readers will find an explanation of the TIME_WAIT state in the UNIX socket FAQ.

7.5. Aliases

Port numbers make for a terrible user interface. To use service names instead, one just has to symbolically link
the service name to the service script, e.g.

1n -s /srv/listen/finger /srv/listen/tcp79

This allows the owner to edit /srv/listen/finger to change the finger service, instead of having to
remember that finger clients connect to port 79.
It also allows authenticated users to start the script by name:

ssh alice@the-dam.org /srv/listen/finger

The script will have an effective user id of aliceﬂ and might therefore give more information than the
anonymous version accessible to anyone. By contrast, 1isten starts the anonymous version with an effective
user id of user listen, who can not read much on the system.

8Note that this path appears as /run/socket to the service script, see figure
9Unless the script's author has set its setuid bit.
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8. Alternatives to listen

8.1. Plan 9’s listen and Inferno’s svc

A study of the source code of the fourth edition of Plan 9, 9front, and inferno, as well as asking for 1isten
service script examples of 9fans (Content of your /rc/bin/service or /dis/svc 7 — 9fans thread|2024) make
some usage patterns emerge.

Namespace files: while in the default installation few services appear to have a custom tcpXXX.namespace
file, some services like ftp and http do. The others use the site-specific default namespace file /1ib/namespace.
These put the files to be served where the service expect them, without any complex software configuration
mechanism.

Seamless authentication: On Plan 9 and inferno, a user’s identity spans a whole cluster, not just a single
machine. Authentication is baked into the 9P protocol, and requires either less than 15 lines of boilerplate, or
direct handling by some standard middleware. Switching a process’ identity, say from alice to bob, requires the
caller to prove to the auth server that it knows bob's secret. This is automagically handled by the factotum at
both ends of the connection. The namespace file benefit implicitly from that mechanism, provided the currently
mounted factotum knows the required secrets.

Simple scripts: Only the two simplest services (the echo and discard protocols) in the default installation
are fully implemented as shell scripts. The rest are custom servers written usually in C for Plan 9 and Limbo
for inferno, or thin shell wrappers around those custom servers. Reports from the 9fans mailing list, however
(Content of your /rc/bin/service or /dis/svc 7 — 9fans thread 2024), praise the ease with which one can write
a custom network service for a specific use case, such as collecting vac hashes after a backup, a text-based
zine, a connection helper to some MUDs, etc.

/net usage: The synthetic /net hierarchy (Presotto and Winterbottom [1993)) ref is wildly used among
the listen service scripts, which get it as an argument. As with all the resources on Plan 9, this part of the
filesystem can be exported and shared, in total or in part, between different processes on different machines.

We want to transpose the patterns to Linux, despite the lack on integration of two of the basic primitives
of the Plan 9 experience:

e per-process view of the filesystem (namespaces),

e unprivileged modification of said view.

This lack of integration on Linux was compensated by

e the use of Guix containers (which offer a per-container view of the filesystem, see section ,

e and our new £29p FUSE 9P client, which allow for unprivileged mounting of 9P2000.L servers from within
a container, something that was absolutely impossible before, see section 2.2

Namespace scripts replace namespace files, as there are no newns or addns on Linux.

Process and file ownership and permission make a poor, but workable, substitute to the seamless 9P
authentication mechanism of Plan 9. As detailed in section [6.3, one can run a 9P server as one identity, and
use the socket's ownership and permission to allow another user to benefit from this identity’'s rights. The
alternative, which inetd uses, would be to run as root.

/net is replaced by a single socket from which the service script can talk to the incoming connection. A
Linux network namespace isolates the service script from the host's network. Compromises made due to the
complex and mostly undocumented interactions between Linux namespaces and Linux capabilities (see section
make porting /net to Linux a very worthwhile target to improve listen.

8.2. (x)inetd

On Linux and BSD, inetd used to be the tool that would, like 1isten, launch a network service when a client
connects and forward data back and forth between the connection and the service's standard streams.
inetd has fallen out of fashion:

e most servers have grown in complexity, they do request management on their own.

e inetd listens on behalf of several servers, these servers start on-demand when a request comes. This
saves CPU and memory, but increases latency, and costs one process per request.

— The CPU and memory gains decreased to insignificance because of decreasing hardware costs.
— Conversely, from a business perspective, the cost of latency has gone up.



— Processes cost more than threads (on Linux). Self-managed servers (such as e.g. nginx) use a
single process (sometimes one process per core) and handle each request in a thread. This makes
inetd more expensive under load than a single more complex server.

— Nowadays, people use containers (with podman, docker, kubernetes, etc.). Containers typically
simulate a whole operating system to run one or a small handful of services. Container orchestration
software fulfill inetd’s role and more.

— Like most good things from UNIX, inetd’s role now eschews to systemd, the cancer that will
eat Linux's userspace. Almost all modern distributions lack an inetd (except for a handful of
indomitable Gauls sensible Linux distributions like GNU Guix). BSDs have kept their sanity and
their versions of inetd.

inetd reads its configuration from a text file, typically /etc/inetd.conf. Editing this file requires privileged
access. This leads to difficulties in a multi-user context. 1listen addresses this.

inetd also provides each service process with a complete view of the system, limited only by the ownership
under which said service process starts. In contrast, listen places security first by running the service scripts
in a initially void namespace.

8.3. Authbind

authbind exists since 1998. It allows access to privileged ports on a per-user and per-port basis. It does so
by masking an application’s call to bind. The application ends up calling authbind's version, which uses a
privileged program to call the real bind in the application’s stead.

8.4. Systemd

systemd offers to run ephemeral services, as inetd does. However using this functionality means you also have
to chose systemd for everything else the systemd developers bullied their way into (including, but not limited
to: your login manager, your desktop environment, your DNS, your logs).

9. Further work and position

9.1. Unprivileged 9P mounts

When we begin this adaptation work, we naively believed that Linux capabilities, containers, and the Linux
kernel's support of 9P would allow us to emulate Plan 9's per-process namespace on Linux.

The first bad surprise happened when we discovered that within a Linux mount namespace, one can only
mount a handful of filesystem types, the only non trivial of which is FUSE. 9P is excluded. We therefore had
to write a 9P-to-FUSE wrapper (see section instead of relying on the kernel's vOfs.

We would like to work in the direction of a patch that would allow in-container unprivileged mounts of 9P
filesystems on Linux.

9.2. Porting /net, to avoid mixing capabilities and Linux namespaces

Another bad surprise happened when we discovered that, first setuid binaries, and worst, setcap binaries, had
no effect in Linux user namespaces. After emailing the kernel developers themselves we got confirmation that
what we wanted to achieve: use a setcap binary to grant listen the ability to bind to privileged ports from
within a Linux user namespace, was impossible.

This makes it impossible to run 1isten in its own namespace, as we initially wanted to do (see section[7.2),
instead it gets a full view of the system, limited only by its identity.

Porting /net to Linux, would allow us to run listen in a container in which the host's /net is 9P-
imported, and stop caring the Linux capabilities feature of which was mildly said that “coherence in its design

and implementation are not particularly evident [}

9.3. Pledge

After running their initialization code, and just before exec-ing into 1isten's provided command, namespace
scripts should freeze their namespaces, and prevent the service script from doing anything not strictly necessary
to answer the clients’ requests. One way to do that is to port OpenBSD’s pledge to bash. Justine has written

10https ://1lun.net/Articles/632520/
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an awesome port of pledge() to Linux. We wish to incorporate it in a loadable bash builtin, which would allow
pledges to happen mid-process in bash, and not just as a wrapper to a command.

9.4. Tighten the capable wrapper

listen's ability to bind on privileged ports hinges on the with-cap-bind wrapper. As of <2024-01-08 Mon>
this wrapper supports any command. Its only use consists of a socat invocation that redirects data from a
port to a service container's /run/socket:

/run/setuid-programs/with-cap-bind "$(which socat)" -dd \
TCP4-LISTEN: "$port",fork,reuseaddr \
UNIX-connect:/run/listen/"$service"/socket \
>>/var/log/listen/"$service"/listen.log 2>&1 &

We should make the port number the only argument to the wrapper, and bake the socat invocation into
the wrapper. That way, when an attacker gains remote code execution as user 1isten, it can not bind arbitrary
services to any port unless it also gains write rights to /srv/listen (which user listen does not have).

9.5. Listen services

Our work on listen started when looking for a clean way to write a finger server and getting frustrated
that none existed. Our finger service being operational, our sights are now set on new protocols aiming for
simplicity like gemini and nostr.

9.6. Preventing resource exhaustion

As mentioned in section [6.5} an attacker taking over a service process could exhaust the system's resources. We
are working on a fix to that, but Linux’ API for resource limits has complex interactions with Linux namespaces,
that we do not fully understand yet.

9.7. Down with port numbers

Securing the 1listen process proved the most frustrating part of the design work.
For example: the question “how do unprivileged users bind to privileged ports 7" admits no good answer,
because the question itself is wrong on so many levels:

e Port number themselves stem from TCP emerging from earlier protocols (see the early RFCs 322, 349,
433 and those that obsolete them), and a clean design would probably elect to eschew them, leveraging a

2128 address space to allow process-to-process communication, instead of the route-to-host, then route-
to-process dance we do know.

— The host to process frontier should be an implementation detail on the receiving end, not baked so
deeply in the stack.

— This barrier may even change from request to request as new hosts come up or down depending on
load.

— This already happens anyway with e.g. kubernetes, but we would have less cruft if it was baked into
the protocol.

e We should use strings instead of numbers to specify the protocol.

e Apart from ease of implementation and historically underpowered hardware, why does one need to specify
privileged ports as a single range 7 One should be able to restrict access on a per-port basis.

e Even then, why should one manage ports as a monolithic entity that either all users, or no user but root,
can access !

e Ports should benefit from a fine-grained access control API, like files do. Exposing ports as virtual files
would allow that.

10. Conclusion

The work herein proposed is but a leaky dam, failing to contain the waterweight of historical legacy.
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centre, left and right
beyond the stereotype

Daniel Maslowski
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Abstract

We propose a refresh of what a system and its environment shall look like. The times
they have a-changed. No more terminals connect many people to a shared “mini"computer
that really is the size of three fridges, and no longer do we pile up PCs. We have very
capable phones, tablets and laptops now, plus lots of gadgets, loT and building automation
equipment. That calls for radically controversial shifts in multiple directions to rethink
compute models and operating systems yet again.

Introduction

Before looking at the ideas presented in this paper, we begin with questioning and breaking
traditions. We observe a bizarre evolution of computers. Having started in labs just like a lot of
other innovation, the first eventually electronic computers had their applications in research and
paperwork replacement. We neglect the military use case deliberately. Today, computers are
widely used for bureaucratic processes, ecommerce, communication, entertainment, and still
some research. The ideas of the personal computer and online services have a huge impact on
privacy. Under those preconditions, we take a look at how things worked out.

Text is not universal

Unix developers have so often talked about text as a universal language. How is that working
out? Misunderstandings are omnipresent in communication, not limited to meltdowns on mailing
lists. So today’s messengers offer sending multimedia messages, with pictures, audio and video.
In the 90ies, mobile services included MMS already.

There are different alphabets and languages. Different cultures are contributing to the possibility
of clashes. Think of some Asian alphabets with imagery characters instead of abstract sounds
represented by letters. Emoji may help to a degree. Either way, is text a universal primitive in
computing?

“Thanks to Ron Minnich as well as the Open Source Firmware, Plan 9 and RISC-V communities



We propose to learn from graphical applications that have been developed in the last three
decades. Keep in mind that some things are easy for some people, not necessarily simple, and
hard for others. A good bunch of work has gone into accessibility for that reason.

For example, we frequently fight with compilers. Clever designers try to figure out how to explain
errors well. Would graphics help a lot with that? Certainly in documentation, graphs are used
frequently. The existence of ASCII graphics itself shows that text is insufficient, e.g. when a
compiler error message points to a position in a code snippet using dashes, pipes and caret
characaters.

Files, folders, cabinets, archives... where dust gathers

The traditional desktop has grown from paperwork imagery. The abstractions therein cause
mental complexity. Some information may get lost from that. A virtual desktop may expose
overwhelmingly much and too little at the same time. Where are the documents? What are
all those files? A first look at a typical computer leaves many people puzzled. And even
experienced software engineers are having a hard time getting URL parsers right.

As another example, let us explore a Linux filesystem and look at a random file we may find:
what the heck is /proc/234565/smaps? How is it with hardware access? We argue that writing
arbitrary strings to files for hardware effects is weird at best. And noone can keep those many
IDs used all over the place in their mind at any given point. So they are solely leakages for
reasons that remind us of bookkeeping. We associate that with boring administrative jobs.
People make errors in those because it is easy to to make them. Looking at compilers again,
they strive to mitigate common errors today, mainly by being very strict, like a school teacher.

Nobody likes paperwork and administrative processes except those who want it: legislators,
governments, and institutions. Forms, files, folders and even papers are very tiring. Is it time
for new concepts and/or naming? Web applications shifted away from bare forms that feel like
editing databases by hand to specific interactive widgets. For example, posting on social media
does not require filling in your name all the time. A lot of information is already present and can
be reused.

Graphical applications

Our hardware evolves and explodes in diversity. A lot of special purpose SoCs with various
peripherals, especially with the royalty-free RISC-V instruction set architecture now, keep
popping up like mushrooms in the woods. Parts for specific applications such as machine
learning and multimedia processing ASICs have become ubiquitous. Mediocre laptops come
with a lot of processing power and integrated graphics acceleration, media encoders and
decoders, and buses for high enough throughput to watch a 4k movie.

From the days of text based terminals, we are still left with lots of non-graphical tools that may
as well be integrated GUIs. Yes, drawterm is a very fine start! With cpu we bring our tools when
connecting to remote machines. How about bringing the GUIs as well? We could come with



a self-serving binary that can be attached to from other machines again and keeps running
persistently.

Not invented here

Do we really have to have our own kernel? What are the benefits? Experiments are nice
on clean slate. With protocol design, we can leverage way more existing infrastructure. For
example, Linux has thousands of drivers that would not need porting. Plan 9 concepts and
primitives have been transfered to Linux, such as namespaces and process isolation.

Projects like Glendix, Plan 9 from User Space aka plan9port and 9base have brought the
systems together. Ron Minnich created https://github.com/u-root/cpu and https://github.com/u-
root/sidecore in the vein of a Plan 9 feel.

There are many implementations of and readily available systems offering file servers, such as
TrueNAS with NFS and many network storage appliances on the market. It doesn’t have to be
9p alone. And streaming media has its own requirements.

The ideas

The following ideas can be summarized as elements of a personal compute infrastructure’.

WebGAP

The Web General Application Protocol is a reiteration and combination of a multitude of existing
concepts. Our vision is a generic protocol for heterogeneous computing environments consisting
of many different devices and platforms in the sense of several architectures and operating
systems running on a diverse mix of chips and further hardware from various vendors.

We are deploying web applications today that run in part in remote environments and in part
in the browser by shipping initial bundles which provide an interactive experience via widgets,
fetch additional data at runtime, and communicate with external services. This is concenptually
similar to some of the first RFCs from the 60ies proposing command based protocols that draw
on the screen of a terminal. Similarly, there were ideas for running an application on the terminal
that was pushed out from a minicomputer or mainframe before.

To support today’s rich applications with multimedia content, we already have protocols in place
for streaming such as WebRTC and active connections via Web Sockets. For the interactive part,
the web browser has grown to a runtime environment beyond a traditional desktop, inherently
integrating with the outside world and the hosting operating systems with WebUSB, WebSerial,
and other components as described in project Fugu. Many libraries and frameworks have grown
around those concepts, such as React, Angular and Vue. However, some gaps still remain.

Thttps://glyoung.net/blog/personal-infrastructure.html



WebALE

The Web Application Launch Environment replaces traditional desktops with a simple environ-
ment similar to what you know from phones and tablets. However, the model differs, in that
apps are self-serving. Think of an environment like rio, but with a web based feel. Similar to
running code via cpu through drawterm, you drop a syslet to a remote that serves you back
both initial Ul and data. l.e., it’s like cpu, but with apps in mind. However, the point is to leverage
resources beyond just compute. As of now, loT sensors and actors (temperature, humidity, door
locks, fans, window blinds...) and gadgets (cameras, watches, NVRs...) are all connected
over networks, yet cumbersome to set up and manage.

Having an application specific protocol decouples from the remote’s architecture, in that only a
well-defined daemon on the remote is sufficient and code for its runtime. Base the runtime on
WebAssembly and WASI, and the OS is abstracted again. We already see a similar trend with
cloud environments, and that is what Wasm is being tailored for. Remember Dis?

Mind that we suggest a model, not an implementation. You can already do most of this with
currently existing primitives.

Putting things together

The web as a platform has evolved from documents to applications, and we strive to further
develop it into a full computing environment. All that is necessary for the plumbing is protocols
with authentication in mind. Besides factotum, the well-established SSH protocol may serve
as another primitive. We neglect discussing further details at this point and list a few historical
examples for comparison to round up our thoughts instead.

Web browsers in the 2000s until the 2010s had plugin APIs for extension, so third party runtimes
such as Flash and Java created their own platforms, with a nuance of applications called
applets. The promised portability had worked out only to some degree, and local appliances
with management interfaces would hardly ever get upgrades. The security situation became a
nightmare. WebALE puts one’s own devices in control in such a way that less additional parties
are involved.

Given that everyone has a laptop or more these days, as well as phones, tablets, gadgets, loT
and home automation equipment, we seek to change the compute model accordingly to unleash
the potential therein. One way to deploy services now is Kubernetes, a distributed container
runtime environment that needs no cpu or SSH, being declarative mostly, or software-defined
service infrastructure. We can let loT be similar with WebGAP, keeping it all local.



GPU Filesystem for Plan 9

Joel Fridolin Meyer
joel@sirjofri.de

ABSTRACT

Many modern computer systems have dedicated hardware for com-
puting graphics and other floating point-heavy operations. GPU manu-
facturers and organizations try to standardize interfaces, often providing
standard APIs and drivers for their specific hardware. This WIP paper
describes a potential filesystem for Plan 9 for dedicated GPU hardware.

Graphics or not graphics?

GPU hardware evolved from very specialized pipelines for 2D (and later 3D) rendering to
more generic processing units. In the last few years GPU manufacturers started to sell
““unified shaders” that allow even more generic computing pipelines. Hardware acceler-
ated Al computation and more specialized graphics processing pipelines! justify drop-
ping native graphics processing support, at least in an initial implementation of a GPU
filesystem for Plan 9.

This generic use of GPUs allows us to ignore many graphics-specific parts of the
API, as well as potential drivers. Of course it also makes our interface a non-standard
interface, but due to the nature of Plan 9 filesystems this should be fine.

The implementation

Since most GPU drivers are very complex and it takes a long time to develop them, this
first implementation will be fully CPU based, using an interpreter engine to run the
shaders. The interfaces however should look as similar as possible to a potential GPU
implementation.

Due to the nature of filesystems, this should make it easy to “upgrade’ applica-
tions to actual GPU hardware: Using a different GPU filesystem is all that’s needed. The
software itself doesn’t need to change.

Since real GPU drivers for uncommon operating systems are a rarity, this imple-
mentation approach also makes software that relies on the GPU filesystem work on sys-
tems that don’t have dedicated graphics. Obviously, there’ll be a huge speed difference
in this case.

The filesystem interface

This implementation will provide a very simple interface that’s based on existing APlIs,
mostly OpenGL and Vulkan. Because of this simplicity the interface is not set in stone
and many details are missing. In fact, the proposed interface might not work at all with
real hardware, but it can be a start.

! Epic Games’ Nanite does rasterization within a shader. They also plan to make Nanite compute the
shading on the software level. [Nanite]



The shader language is SPIR-V, which is used in Vulkan as an intermediate lan-
guage. The shaders are loaded into the filesystem, which will compile them further
down to the specific hardware, so they can be executed. [SPIR-V]

Buffers are represented as files within the filesystem. This gives us the flexibility
to access the buffer contents by standard file 10.

Management is handled via a console like interface as a control file. Using this
interface, it is possible to initialize new shaders and allocate new buffers, as well as con-
trol binding and program execution. For debugging purposes, an additional desc file
is used to display all shader and buffer bindings.

Shaders and buffers are represented as the general concept of ‘““objects”’. Each
object has its own subdirectory within the GPU filesystem (1). After initializing a new
shader or buffer using the control file the client can read back the ID of the object. With
that, the application knows which object directory to access.

1. The GPU filesystem /dev/gpu.

B/ctl (control file) O
O0/desc (descriptors file) g
S/O/buffer (sample buffer file) g
7/ 0/ctl (sample buffer ctl file)
/1/shader (sample shader file) 0
/1/ctl (sample shader ctl file) H

Shaders and buffers can be loaded by writing to their files; the application can also
read their contents (2).

2. Loading shaders and buffers.
Hcat myfile.spv > /dev/gpu/l/shader O
cat mydata.bin > /dev/gpu/0/buffer U
..

# bindings, see (4)

0 compile shader and run, see (3)

cp _/dev/gpu/0/buffer > result.bin H

Ooooono

The filesystem can’t know when a shader is loaded completely. Because of that, it
is necessary to tell it to compile the shader. This can be done by issuing the compile
command on the shader control file (3).

Since a single SPIR-V program can contain multiple entry points (OpEntryPoint), it
is necessary to specify which shader function to run (3).

3. Compiling and running a shader.
Hecho c > /dev/gpu/1/ctl O
recho r main > /dev/gpu/l/ctl H

When executing the shader, it’s essential to specify the number of workgroups.
The workgroup size represents the count of shader invocations for that workgroup, and
it’s defined within the shader program itself. Vulkan uses 3D vectors to specify the
amount and size of workgroups. [wkgrp]

Binding shaders and buffers

Shaders and buffers need to be bound in some way that enable shaders to access the
right buffers. It’s hard to understand all the requirements of the actual hardware with-
out diving deep into GPU architecture and existing APIs. [desc]



Our implementation provides a very simple abstraction that is based on Vulkan and
the concept of descriptor pools and descriptor sets with their bindings. Ideally, the
same abstraction may be used for GPU hardware.

Each shader is bound to a descriptor pool. A descriptor pool can describe many
descriptor sets, which in turn point to the buffers.

While shaders are bound to a full descriptor pool, buffers are bound to a single
binding slot within a descriptor set. Shaders have everything needed to access a spe-
cific buffer compiled in their code. They know the set and binding of the buffer they
want to access.

Because this information is compiled in the shader, it is still possible to switch
buffers by changing the binding itself.

(4) shows how to create a new descriptor pool and set up bindings. In this exam-
ple, buffer 0 is bound to the second (index 1) binding of the first (index 0) descriptor
set of descriptor pool 0.

4. Binding shaders and buffers.
set up descriptor pool with 2 descriptor sets
echo n p 2 > /dev/gpu/ctl
# allocate 4 bindings
Cecho s 0 0 4 > /dev/gpu/ctl
U bind buffer 0
gecho b0O0OO1 > /dev/gpu/ctl
(# bind shader to pool 0
echo b 0 > /dev/gpu/1/ctl

I Y o e |

Reading the file desc shows us the layout of this structure (5). We can see that
only one binding is bound (showing the number of the buffer), while the other bindings
are unset (showing -1).

5. Example descriptor table.

HbescPool 0 0
0 Set 0O 0
0 0 -1g
O 1 0
ad

0 2 =10
0 3 -10
0 Set 1 H

While the desc file can be parsed and interpreted, it should be noted that it’s only
meant for debugging and reviewing. Applications should use the interface provided by
the control files.

State of code and future work

The code currently covers the described filesystem interface completely, however not all
functionality is implemented. Furthermore, there are bugs to be expected. [gpufs]

There’s a rudimentary SPIR-V assembler as well as a SPIR-V disassembler. Both are
far from feature-complete according to the SPIR-V specification, missing instructions
may be added easily.

To properly test the interface, it makes sense to implement the filesystem as a ker-
nel device of Drawterm. This way we can use existing drivers and APIs on other operat-
ing systems.



Due to the lack of actual GPU hardware support, | don’t expect much performance
gain compared to other implementations with the same logic. However, the interface is
generic enough to allow applications to use different GPU implementations: GPU hard-
ware, CPU hardware (single or multi threaded), network scenarios.

It makes sense to think about future integrations into devdraw. The GPU filesystem
could control actual images of devdraw and enable faster draw times for graphics ren-
dering.

Since SPIR-V is very low-level, it also makes sense to develop shader compilers for
higher level languages like GLSL or HLSL. Applications are developed by different peo-
ple and for different reasons, so those compilers should not be part of the specific
filesystem implementations.
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Portability has outgrown POSIX

Jacob Moody
Sigrid Solveig Haflinudottir

ABSTRACT

We aim to reevaluate the role of POSIX in regards to portable soft-
ware and expound on a potential redesign of APE that is built with more
modern software assumptions in mind.

History

POSIX is a specification of a "standard operating system interface"[Open18] that is
designed to allow programs to work portably across different specific operating system
environments. POSIX.1 was first codified in 1988, and since then has had varying levels
of adoptions across various operating system vendors. Plan 9 also ships with a mostly
implemented variant of this standard in the form of APE[TrickeyApe].

Due somewhat to the age of the standard, POSIX is somewhat limited in its surface area.
The POSIX surface area is quite small with a focus primarily on lower level system soft-
ware. Compared to most modern end-user programs the POSIX surface area they use is
quite small [Atlidakis16]. Notably it is missing designs for audio, graphics, keyboard
and mouse input, Unicode, encryption, among many other core features of operating
systems today.

In the current landscape of software engineering, portability is often accomplished
through the inclusion of a library that builds on the core operating system interfaces.
This would be projects like SDL2[SDL], QT[QT], GTK[GTK], and so on that aim to provide
consistent interfaces across the major operating system vendors. APE was designed
while POSIX was still a new curiosity[TrickeyApe], and generally has not been revisited
since then. With changes to adopting more abstracted libraries for the purpose of
portability, it makes sense to reevaluate how this type of design could be leveraged by
something similar to APE.

The design of APE

The APE ecosystem on Plan 9 is parallel to the native system, meaning that it provides
its own C library, shell, and system utilities which are built on top of the kernel alone.
This was done to provide a more strictly compliant interface for using existing software
that targeted POSIX. However the Plan 9 kernel has a much smaller system call base than
a typical UNIX system and thus in order to provide the same interfaces, such as
select(), some amount of complexity must instead be handled by the APE library. This
requires positioning APE between the calling application and the kernel in a lot of cases,
most notably for file descriptors. This makes some amount of sense, if APE is going to
provide the facilities of a UNIX kernel, it needs to have some of the same control that a
UNIX kernel has over the resulting program.

To give an example of how much is going on with these file descriptors, here is an
excerpt from how these files are wrapped:



typedef struct Muxbuf {
int n;
unsigned char* putnext;
unsigned char* getnext;

char fd;

unsigned char eof;

unsigned char roomwait;

unsigned char datawait;

int copypid;

unsigned char data[PERFDMAX] ;
} Muxbuf;

typedef struct Fdinfo{
unsigned long flags;
unsigned long oflags;
uid_t uid;
gid_t gid;
char *name ;
Muxbuf *buf;

} Fdinfo;

While we commend the authors of APE for writing a POSIX compliant select() imple-
mentation we think that this abstraction raises a lot of problems. Plan 9 uses file
descriptors for many things, even more so than UNIX, as in comparison things that
would be library or syscall interfaces are instead presented through the use of file sys-
tems. The problem that arises here with having this layer on top of file descriptors is
that making use of any native interfaces becomes more difficult. Care must be taken to
ensure that assumptions made about how file descriptors work under native conditions
and under APE match, and often these are at odds.

Things become increasingly tricky as one wants to make use of libraries that use other
libraries as they may have assumptions about buffering (or lack thereof). These design
components restrict the amount of code that may be shared between the native environ-
ment and APE, and instead obligates copying large portions of code. While this is largely
harmless it does increase the maintenance burden if not controlled.

A brave new APE: NPE

NPE (pronounced "nope") is a reimagining of a compatibility layer with modern portabil-
ity in mind. NPE sits on top of the native Plan 9 C library, and uses the native facilities to
provide a familiar enough UNIX-like interface along with implementations of portable
libraries such as SDL2 and pthreads. NPE strives to be the minimum shim layer needed
to get alien code to run. Compared to APE’s somewhat involved wrapping of file descrip-
tors, all that NPE does in order to provide open(), read(), write(), and close() is:

#define O_RDONLY OREAD
#define O_WRITE OWRITE
#define O_RDWR ORDWR
#define O_CLOEXEC OCEXEC
#define O_TRUNC OTRUNC

That’s it, just get the flags right and use the native code. NPE is designed to prefer a
good enough implementation that requires the least amount of fanfare over the more
strictly correct alternative. This of course does impose some limitations on what pro-
grams may expect of the library, but for typical use cases this issue is quite uncommon.
In the rare event where there is some POSIX detail that differs, a #ifdef or #define
suffices to resolve the issue.

The other large benefit of such a design is that it allows leveraging existing native
libraries. NPE presents two examples of this in the pthread and SDL2 implementations,



which make use of the native threading and graphical libraries. This type of design
removes the need for maintaining code duplicated solely for compatability and allows
for improvements and novel designs of the native interfaces to be tested against larger
external projects with minimal overhead. In addition, the API shims are also not very
expensive: the SDL2 implementation is meager three thousand lines and the pthread
implementation clocking in at a dash over two hundred.

There of course are some limitations to this approach. NPE works best when targeting
programs which don’t assume strict POSIX compliance but rather more abnstract operat-
ing system interfaces. We find that code targeting Windows, UNIX and MacOS to be typi-
cally within this realm, whereas code written for a specific operating system, suchg as
an OpenBSD daemon, is more outside of the comfort zone for something like NPE. Natu-
rally, NPE really shines when used with a program that makes heavy use of SDL2, which
in turn provides many core operating system-esque interfaces due to its application in
embedded systems like game consoles. SDL2’s interfaces impose little restrictions or
name conflicts and are generally pleasant to write implementations for.

It could also be said that code which works easily with NPE’s constraints is likely not too
much further from being directly portable to native Plan 9 code. This seems to be true
generally, however for recent and active software projects keeping a tidy diff against
upstream makes it easy to adapt to upstream changes. Since NPE allows the user to pull
in native libraries in harmony with NPE itself, this makes for a nice progressive porting
experience when the goal is to produce an entirely native port.

Success Stories and Future Work

NPE was first used to port UXN[UXN] to Plan 9 but quickly found use for additional pro-
grams. As of the writing of this paper NPE has been used to port Fast Tracker 2, Pro
Tracker 2, Duke Nukem 3D, Rise of the Triad, Wipeout, tinygl, Cave Story and RGBDS
among other smaller utility programs. None of these programs required conflicting
implementations of functions but only light modifications to the original source. With
each program NPE has slowly grown to cover a larger range of functions, and at this
point covers a majority of the SDL2 surface area.

Discussions are being had to consider NPE for inclusion with 9front. APE’s footprint
within 9front has become smaller and smaller as contributed native variants have gradu-
ally replaced APE-only programs. As such, reimplementing existing APE programs using
only NPE is now easily within reach. Further work and expansion of NPE is still required
in order for this to succeed, but surveys of the remaining software do not indicate any-
thing preventing the core NPE design from being sufficient. This transition would cut
down on the maintance burden of these programs, allow for greater reuse of code
between both sets of programs, and would overall be a reduction in complexity.
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ABSTRACT

neoventi is a forwards-looking backwards-compatible reimple-
mentation of the venti disk storage system, intended to address short-
comings in the prototype system while retaining the useful properties it
revealed. A further benefit of the creation of a secondary implementation
is the development of a better understanding of the original prototype,
enabling further refinements to the original project.

Background

The venti disk system is a networked archival data storage system, which can be
most effectively understood as a disk-resident write-once hash table, in which keys
must always be the hash of their corresponding value [1]. Venti is intended to be one
piece of a larger system, useful as the backbone for backup systems and snapshotting
file systems [1]. Fossil is an archival file system built on top of venti, originally intended
to supplant the Plan 9 file server [5].

The venti disk system has interesting properties that enable unusual features,
largely borne out of simple but niche design choices, such as hash-based addressing
and an append-only primary data log. Unfortunately, venti is also explicitly a prototype
[1] and has both design and implementation limitations that cannot be easily addressed
[2].

Further, many of the issues that plague the venti prototype’s code base are compli-
cated and entangled. The process of writing an implementation intended, from the
beginning, to not be merely a prototype inherently lends itself to a better understanding
of the design of the original prototype and, thus, of how to fix the issues. Multiple bugs
in venti have been fixed as a result of the neoventi work; rewriting the code does not
need to mean abandoning the original but can instead complement it. Having divergent
implementations provides a practical method of iterative improvement: testing them
against each other.

From a client’s perspective, the venti system is straightforward. A trivial binary pro-
tocol is implemented over TCP. Variable-sized blocks written using the protocol yield an
address as a hash of the block’s contents; the block may then be read back using its
hash. This simple design yields a system with interesting properties, including idempo-
tent writes, immutable blocks, and implicit corruption detection [1].

That client’s model is inadequate for understanding a venti server, however, as
implied by venti’s man pages.



BUGS
Setting up a venti server is too complicated.

[3]. Setting up a venti server is complicated not merely because the tooling for
doing so is inadequate - although this is certainly true - but because the venti server
itself is complicated, and the primary inadequacy of the tooling is in failing to protect
the operator from this complexity.

In many places, the venti documentation refers to "convention" with regards to how
data is stored [4]. This includes the process by which large files and directories are
stored in venti and the way files are stored in venti. The documentation is misleading;
many of the conventions are hardcoded into various parts of the venti tooling as
assumptions, and violating the assumptions can cause problems up to and including
data loss.

For instance, venti blocks are not merely data. They are associated as well with
type tags, which the documentation claims is done by venti [4]. This is contradicted by
the documentation of the network protocol, which notes that each write operation must
include a type tag, which venti stores. This mismatch of assumptions results in missed
opportunities for useful tooling and, if the client puts in a tag that the data verification
tooling thinks is "wrong," it may lead to the tool marking the block as invalid and ren-
dering it unreadable, as can be seen in the venti/syncarena code:

if(vttypevalid(cl.info.type) < 0){

broken = 1;

}

if(broken && fix){
cl.info.type = VtCorruptType;
if(writeclumphead(arena, aa, &cl) < 0){

}

[6].

Additionally, each block is tagged with the ID of the user who first wrote it, which
has privacy and security implications; security in general is a major shortcoming of
venti. The protocol was designed to support authentication and encryption but neither
the server nor any clients implement this support in any way, and the documentation
outright acknowledges that the system was designed so that it could be secure [4].

The implementation has also been plagued with a long string of bugs. Most known
bugs have been fixed, but not all. Attempts have been made to fix some of the remain-
ing issues, but the code base is complicated and entangled.

Fossil has historically been even less reliable than venti, and there are multiple
known serious bugs that have never been fixed.

In the time since fossil was originally conceived, the Plan 9 file server has indeed
been supplanted, but not by fossil. The current predominant file systems in use are the
Plan 9 world are cwfs and hjfs [7], both of which run in user space. In fact, the file server
/ auth server / cpu server / terminal distinction has largely been erased, as there is now
a unified kernel that can act in any desired configuration [8]. There have been other file
systems proposed, as well, all of which run in user space [9] [10].

However, largely for reliability reasons, fossil has since been supplanted as well.
While there are a few remaining users of the system [11], most have abandoned it, and
for good reason: for a long time, there were serious data loss / corruption bugs!



Despite the flaws, the venti system possesses many useful and interesting proper-
ties that are worth preserving, which motivates the redesign and implementation of a
successor system. Some of these features are shared with other file systems (most
notably Plan 9 file systems, due to their shared histories), and others are unique to the
venti system, or to the venti/fossil combination.

Many of the flaws have also been slowly improved over the decades. Fossil suppos-
edly had one major data loss/corruption issue that bothered many of its users, which
was reportedly fixed around the early 2010s, though confirmation of this is tricky [13].
There are few users today, but we do exist, and these issues seem largely gone.

On the other hand, there continue to be many known bugs, from outstanding lock-
ing issues to bad behavior when fossil runs out of disk space to tooling claiming there
are multiple PiB of free space on a file system sized under 10GiB [14].

The idea of writing neoventi arose slowly during my work on the venti system.
Some of the bugs were simple enough to fix, but months of work and issues ranging
from the usage of signed integers for memory sizes, and an alignment bug that would
cause a crash if the cache was set to exactly 128MiB, and the discovery that over 1KLoC
in libventi that were intended as a performance optimization actually made things
slower, and the realization that a code cleanup would not work because one of four lay-
ers of entangled abstractions depended on undocumented behavior in another in subtle
ways, | eventually got fed up enough that | no longer wished to work on the venti code
base. | still wished to use a venti system, though, and there were features | wanted to
experiment with adding to venti that | did not think could be reasonably added to the
existing code base, so after months of wavering, | gave in and decided to rewrite venti
from scratch.

neoventi

neoventi currently implements a read-only venti server in under 900 lines of code.
It is fully compatible with the venti disk format, and has been tested on multiple existing
ventis, including the one that backed the fossil it was running from. neoventi is, right
now, intended primarily as a proof-of-concept, and a demonstration that venti can be
simplified greatly from its current incarnation.

neoventi is largely written as a reaction against perceived shortcomings in venti.
For instance, to process a read request, the venti server goes through more than five
layers of abstraction: fcalls, RPCs, the Packet layer, Fragments, ZBlocks, and packing and
conversion code to go between the layers. This complexity necessitates a lot of code to
manage and copy data around. This is a burden for maintenance, and introduces a lot of
subtle behavior.

By contrast, to implement the same code, neoventi deliberately goes as far in the
opposite direction as possible, and does not use even a single layer of abstraction. This
difference in approach can be seen easily in the code for establishing a connection with
the client. Here is the code for reading the hello packet from the client in the original
server:

if((p = vtrecv(z)) == nil)
return -1;

if(vtfcallunpack(&tx, p) < 0){
packetfree(p);
return -1;

}
packetfree(p);



This code receives a packet as a Packet abstraction, and unpacks the request into a
VtFcall, before freeing the raw packet. It also has error handling code mixed throughout,
as errors are, in C convention, passed up the stack. For contrast, here is the equivalent
code in neoventi:

vtrecv(conn, buf);

There’s a few major differences. First, the rest of the routine for handling the hello
request in neoventi operates on the incoming buffer directly. Where venti requires multi-
ple memory copies and packet preprocessing, neoventi shuffles bytes around and slams
them back over the network. Where venti constructs a Fcall response, and sets all of its
fields, neoventi just reuses the same buffer into which the client send the request, and
preserves the packet tag.

Secondly, neoventi uses stack allocation for buffers, and avoids heap allocations.
This means that there is no need for constant memory allocations and frees, and is
enabled by the first change.

Thirdly, neoventi uses a setjmp buffer for error handling, instead of passing errors
up the stack. This is enabled in large part by the usage of stack allocation: the stack
does not need to unwind, because there is nothing to clean up!

In practice, the venti protocol is not terribly complicated, and it is not difficult to
get right - and bugs in packet processing are trivial to investigate and fix, where leaky
abstractions and manual memory management and error handling are not. It is notewor-
thy that the entirety of neoventi needed for read-only operations occupies less than 900
lines of code, whereas venti’s packet layer alone is over 1,000 lines of code, and it uses
another 400 lines for the RPC/Fcall code. Venti needs significantly more code just to
read packets than neoventi needs for an entire functional server!

neoventi’s performance leaves much to be desired, in large part due to the total
lack of caching. Nonetheless, it tests within 10% of venti’s performance for cold reads,
and that’s despite the fact that manual investigation of the block structure being read
suggests that blocks were being read from disk on average more than three times each.

neoventi’s read pathway has been tested thoroughly. Testing was conducted using
a fossil system root mounted via vacfs as a read-only root, a ramfs for a write buffer,
and wbfs to deeply unionize them [16]. Tests included playback of multimedia, a full
system compile of my Plan 9 branch, full scans of the git history and every version of
every file ever stored in the distro, and streaming of game ROMs using Plan 9’s built-in
emulators [17]. No bugs were found, and performance was more than acceptable:
notable results include 720p 30FPS video streaming through neoventi in real time with
no stuttering [18].

Use Cases and Future Work

Venti/fossil is already a useful system. | have accomplished much with it that |
would not have been able to with any other system | am aware of. During the last 9front
hackathon, | was able to sync my laptop’s venti with my file server 50 miles away in
under fifteen seconds. This works only because syncing two ventis can be reduced to a
copy of fully linear data. Data in venti exists independently of its physical address, and
so can be copied to an arbitrary location on the destination machine. After syncing from
one venti to another, one can note down the latest address in the source venti. The next
sync is effectively just a copy of all data between the prior highest address and the cur-
rent latest block - there is no need for any indirection or cleverness whatsoever.



Fossil’s snapshotting mechanism also allows for a file system to be forked across
machines and merged as with branches in a git repository. At present, this is entirely a
manual process, and can be painful if the trees have diverged. In principle, however, git
can be implemented directly on top of a venti+fossil system.

Further, it is possible to fully automate the synchronization of an arbitrary number
of ventis using a peer-to-peer torrenting system. This would require engineering effort,
but should not be terribly complicated; Plan 9 already has a native torrenter, and there’s
no need to reinvent the mechanisms here [19]. venti itself could be modified to do this
in the background; multiple file systems can be automatically and seamlessly synced
across arbitrary sets of machines.

Venti currently uses SHAT for its hash, but SHA1 is no longer sufficient; there are
real-world examples of SHA1 collisions. Ideally, it should be made trivial to swap the
hash function for future-proofing, so that when the hash function which replaces SHA1
is itself broken, it should not be painful to swap the function again.

There are many security and privacy holes in venti’s design that should be fixed.
Anyone with access to a venti system has, in essence, full permissions to all data in
every file system stored in the system. The only current practical mitigation is to simply
prevent access to the venti in the first place, and only expose a file system on top of it,
such as fossil, but this can greatly reduce the benefits of venti’s deduplication.

neoventi is intended to fully replace venti for practical use, and to do so by provid-
ing a superset of venti's functionality, with none of its bugs, and better performance
and security. Currently, the only one of these goals which is met is the lack of venti’s
bugs, but that’s a ridiculous claim to make when neoventi does not currently even sup-
port accepting new data, which makes avoiding data loss or corruption a trivial matter!

The most pressing immediate work is to finish venti compatibility by adding in
write support. After that, more directly useful projects, such as improvements to the
disk formats, upgrading the hash function, and replacing the venti protocol with a 9p
implementation, will be possible. Performance is a tertiary goal, though it will likely get
some focus before new features are added since optimization is often a pleasurable
endeavour.

Conclusion

neoventi provides a read-only drop-in replacement for the venti server, and meets
its goal as a proof-of-concept: it demonstrates irrefutably that it is possible to imple-
ment a venti system with a fraction of the complexity used by the original implementa-
tion. neoventi needs more work to be able to advance beyond being simply a competit-
ing prototype, but a fresh start makes it easier to do so than to clean up venti. The code
is available [20], and feedback is welcomed.
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